We present AI-systems for the binary codes obtained from the adjacency relation of the triangular graphs $ T(n) $ for any $ n\ge 5 $. These AI-systems are optimal and have for $ n $ odd the full error-correcting capability.
Citation: |
[1] |
J. D. Key, J. Moori and B. G. Rodrigues, Permutation decoding for the binary codes from triangular
graphs, European J. Combin., 25 (2004), 113-123.
doi: 10.1016/j.ejc.2003.08.001.![]() ![]() ![]() |
[2] |
H.-J. Kroll and R. Vincenti, Antiblocking decoding, Discrete Appl. Math., 158 (2010), 1461-1464.
doi: 10.1016/j.dam.2010.04.007.![]() ![]() ![]() |
[3] |
H.-J. Kroll and R. Vincenti, How to find small AI-systems for antiblocking decoding, Discrete Math., 312 (2012), 657-665.
doi: 10.1016/j.disc.2011.06.014.![]() ![]() ![]() |
[4] |
V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998.
![]() |
[5] |
J. Schönheim, On Coverings, Pacific J. Math., 14 (1964), 1405-1411.
doi: 10.2140/pjm.1964.14.1405.![]() ![]() ![]() |
[6] |
V. D. Tonchev, Combinatorial Configurations Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 40, Longman, New York, 1988.
![]() ![]() |
The set $\{x, y\}, \; x < y $ belongs to $\mathcal A_l$ iff $l$ is placed in $(x, y)$