\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new construction of odd-variable rotation symmetric boolean functions with good cryptographic properties

  • *Corresponding author: Sihong Su (E-mail: sush@henu.edu.cn)

    *Corresponding author: Sihong Su (E-mail: sush@henu.edu.cn)

The second author is supported by the National Natural Science Foundation of China (Grant No. 61502147)

Abstract Full Text(HTML) Figure(0) / Table(6) Related Papers Cited by
  • Rotation symmetric Boolean functions constitute a class of cryptographically significant Boolean functions. In this paper, based on the theory of ordered integer partitions, we present a new class of odd-variable rotation symmetric Boolean functions with optimal algebraic immunity by modifying the support of the majority function. Compared with the existing rotation symmetric Boolean functions on odd variables, the newly constructed functions have the highest nonlinearity.

    Mathematics Subject Classification: 06E30, 94D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The nonlinearities of the rotation symmetric Boolean functions

    function nonlinearity
    [14] $ {2^{n-1}-{n-1\choose k}}+2 $
    [17] $ 2^{n-1}-{n-1\choose k}+2^k-2 $
    [11] $ 2^{n-1}-{n-1\choose k}+2^k+2^{k-2}-k $
    [21] $ 2^{n-1}-{n-1\choose k}+2^k+2^{k-1}-2k $
    [20] $ 2^{n-1}-{n-1\choose k}+(k-5)2^{k-1}+2k+2 $
    [6] $ 2^{n-1}-{n-1\choose k}+\sum_{h=3}^k(n-2h)|T_h|+L_k $
     | Show Table
    DownLoad: CSV

    Table 2.  The entries of the vectors in $ T $ for $ n = 13 $

    $ \alpha_1 $ $ \alpha_2 $ $ \alpha_3 $ $ \alpha_4 $ $ \alpha_5 $ $ \alpha_6 $ $ \alpha_7 $ $ \alpha_8 $ $ \alpha_9 $ $ \alpha_{10} $ $ \alpha_{11} $ $ \alpha_{12} $ $ \alpha_{13} $
    $ 0 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ 2 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ 3 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 1 $
    $ 4 $ $ 1 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 1 $ $ 0 $ $ 1 $ $ 0 $ $ 1 $ $ 1 $ $ 0 $
    $ 5 $ $ 0 $ $ 0 $ $ 0 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 0 $ $ 1 $ $ 0 $ $ 0 $ $ 0 $
    $ 6 $ $ 0 $ $ 1 $ $ 1 $ $ 0 $ $ 1 $ $ 1 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 1 $ $ 1 $
    $ 7 $ $ 1 $ $ 1 $ $ 0 $ $ 0 $ $ 1 $ $ 0 $ $ 0 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 0 $ $ 0 $
    $ 8 $ $ 0 $ $ 0 $ $ 1 $ $ 1 $ $ 0 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ 9 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ 10 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ 11 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ 12 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
     | Show Table
    DownLoad: CSV

    Table 3.  Comparison of the nonlinearities

    $ n $ $ 9 $ 11 13 15 17 19 21
    $ F(x) $ 186 772 3172 12952 52666 213524 863820
    [3] 232 980 3988 16212 65210 261428 1046552
    [17] $ - $ 802 3234 13078 52920 214034 864842
    [21] $ - $ 810 3256 13130 53034 214274 865336
    [20] $ - $ 784 3218 13096 53068 214568 866402
    [6] $ - $ 794 3230 13098 53044 214486 866294
    $ f $ in (13) 188 782 3208 13064 52988 214406 866160
     | Show Table
    DownLoad: CSV

    Table 4.  Comparison of the nonlinearities

    $ n $ 27 37 47 57
    $ F(x) $ 56708264 59644341436 62135313450064 64408903437167496
    [17] 56716454 59644603578 62135321838670 64408903705602950
    [21] 56720526 59644734616 62135326032930 64408903839820624
    [20] 56741060 59646045410 62135388947584 64408906524175298
    [6] 56748298 59648002864 62135605652036 64408924613659456
    $ f $ in (13) 56747394 59647951550 62135614817362 64408926590774154
     | Show Table
    DownLoad: CSV

    Table 5.  Comparison of the nonlinearity biases

    $ n $ 9 11 13 15 17 19 21 27 37 47 57
    $ F(x) $ 0.273 0.246 0.226 0.209 0.1964 0.1855 0.1762 0.15498 0.132061 0.11700409 0.10614691
    [3] 0.094 0.043 0.026 0.010 0.0050 0.0027 0.0019 $ - $ $ - $ $ - $ $ - $
    [17] $ - $ 0.217 0.210 0.202 0.1925 0.1835 0.1752 0.15486 0.132057 0.11700397 0.10614690
    [21] $ - $ 0.209 0.205 0.199 0.1908 0.1826 0.1748 0.15480 0.132055 0.11700391 0.10614690
    [20] $ - $ 0.234 0.214 0.201 0.1902 0.1815 0.1737 0.15449 0.132036 0.11700302 0.10614686
    [6] $ - $ 0.224 0.211 0.201 0.1906 0.1818 0.1738 0.15438 0.132007 0.11699994 0.10614661
    $ f $ in (13) 0.266 0.236 0.217 0.203 0.1915 0.1821 0.1740 0.15440 0.132008 0.11699981 0.10614658
     | Show Table
    DownLoad: CSV

    Table 6.  Comparison of the fast algebraic immunities

    $ n $ $ 9 $ 11 13 15
    [3] 8 10 12 14
    [21] $ - $ 10 12 14
    [20] $ - $ 10 12 13
    [6] $ - $ 10 12 14
    $ f $ in (13) 6 8 10 10
     | Show Table
    DownLoad: CSV
  • [1] A. Canteaut and M. Trabbia, Improved fast correlation attacks using parity-check equations of weight 4 and 5, in Advances in Cryptology-EUROCRYPT 2000 (eds. B. Preneel), Springer, Berlin, Heidelberg, 2000,573–588. doi: 10.1007/3-540-45539-6.
    [2] C. Carlet, Boolean functions for cryptography and error correcting codes, to appear in Cambridge University Press. doi: 10.1017/CBO9780511780448.011.
    [3] C. Carlet and K. Feng, An infinite class of balanced functions with optimal algebraic immunity, good immunity to fast algebraic attacks and good nonlinearity, in ASIACRYPT 2008 (eds. J. Pieprzyk), Lecture Notes in Computer Science, 5350, Springer, Heidelberg, 2008,425–440. doi: 10.1007/978-3-540-89255-7_26.
    [4] C. CarletG. Gao and W. Liu, A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions, J. Combin. Theory Ser. A, 127 (2014), 161-175.  doi: 10.1016/j.jcta.2014.05.008.
    [5] C. CarletX. ZengC. Li and L. Hu, Further properties of several classes of Boolean functions with optimum algebraic immunity, Des. Codes Cryptogr., 52 (2009), 303-338.  doi: 10.1007/s10623-009-9284-0.
    [6] Y. ChenF. Guo and J. Ruan, Constructing odd-variables RSBFs with optimal algebraic immunity, good nonlieanrity and good behavior against fast algebraic attarcks, Discrete Appl. Math., 262 (2019), 1-12.  doi: 10.1016/j.dam.2019.02.041.
    [7] N. Courtois and W. Meier, Algebraic attacks on stream ciphers with linear feedback, in EUROCRYPT 2003, Lecture Notes in Computer Science, 2656, Springer-Verlag, Heidelberg, 2003,345–359. doi: 10.1007/3-540-39200-9_21.
    [8] D. DalaiS. Maitra and S. Sarkar, Basic theory in construction of Boolean functions with maximum possible annihilator immunity, Des. Codes Cryptogr., 40 (2006), 41-58.  doi: 10.1007/s10623-005-6300-x.
    [9] C. Ding, G. Xiao and W. Shan, The stability theory of stream ciphers, in Lecture Notes in Computer Science, 561, Springer-Verlag, Berlin, 1991. doi: 10.1007/3-540-54973-0.
    [10] J. DuQ. WenJ. Zhang and S. Pang, Constructions of resilient rotation symmetric Boolean functions on given number of variables, IET Inform. Secur., 8 (2014), 265-272.  doi: 10.1049/iet-ifs.2013.0090.
    [11] S. FuJ. DuL. Qu and C. Li, Construction of odd-variable rotation symmetric boolean functions with maximum algebraic immunity, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 99 (2016), 853-855.  doi: 10.1016/j.dam.2016.06.005.
    [12] G. Gao, Constructions of quadratic and cubic rotation symmetric bent functions, IEEE Trans. Inform. Theory, 58 (2012), 4908-4913.  doi: 10.1109/TIT.2012.2193377.
    [13] W. Meier, E. Pasalic and C. Carlet, Algebraic attacks and decomposition of Boolean functions, in Advances in Cryptology-EUROCRYPT 2004, Lecture Notes in Computer Science, 3027, Springer Heidelberg, 2004,474–491. doi: 10.1007/978-3-540-24676-3_28.
    [14] S. Sarkar and S. Maitra, Construction of rotation symmetric Boolean functions with maximum algebraic immunity on odd number of variables, in AAECC 2007, Lecture Notes in Computer Science, 4851, 2007,271–280. doi: 10.1007/978-3-540-77224-8_32.
    [15] P. Stnic and S. Maitra, Rotation symmetric Boolean functions-count and cryptographic properties, Discrete Appl. Math., 156 (2002), 1567-1580.  doi: 10.1016/j.dam.2007.04.029.
    [16] S. Su, A new construction of rotation symmetric bent functions with maximal algebraic degree, Adv. Math. Commun., 13 (2019), 253-265.  doi: 10.3934/amc.2019017.
    [17] S. Su and X. Tang, Construction of rotation symmetric Boolean functions with optimal algebraic immunity and high nonlinearity, Des. Codes Cryptogr., 71 (2014), 183-199.  doi: 10.1007/s10623-012-9727-x.
    [18] S. Su and X. Tang, Systematic constructions of rotation symmetric bent functions, 2-rotation symmetric bent functions, and bent idempotent functions, IEEE Trans. Inf. Theory, 63 (2017), 4658-4667.  doi: 10.1109/TIT.2016.2621751.
    [19] L. SunF. Fu and X. Guang, Two classes of 1-resilient prime-variable rotation symmetric Boolean functions, IEICE Trans Fund. Electron. Comm. Comput. Sci., E100-A (2017), 902-907.  doi: 10.1587/transfun.E100.A.902.
    [20] H. Zhang and S. Su, A new construction of rotation symmetric Boolean functions with optimal algebraic immunity and higher nonlinearity, Discrete Appl. Math., 262 (2019), 13-28.  doi: 10.1016/j.dam.2019.02.030.
    [21] Q. ZhaoG. HanD. Zheng and X. Li, Constructing odd-variable rotation symmetric Boolean functions with optimal algebraic immunity and high nonlinearity, Chinese J. Electron., 28 (2019), 45-51.  doi: 10.1007/s12190-019-01245-2.
  • 加载中

Tables(6)

SHARE

Article Metrics

HTML views(1546) PDF downloads(505) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return