\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A note on the Signal-to-noise ratio of $ (n, m) $-functions

  • * Corresponding author: Yu Zhou

    * Corresponding author: Yu Zhou 

Yu Zhou and Xinfeng Dong are supported in part by the National Key R & D Program of China (No. 2017YFB0802000, No. 2017YFB0802004), and in part by Sichuan Science and Technology Program (No. 2020JDJQ0076, 2021ZYD0011). Yongzhuang Wei is supported in part by the National Natural Science Foundation of China (No. 61370203), and in part by the Guangxi Science and Technology Foundation (Guike AB18281019, 2019GXNSFGA245004). Fengrong Zhang is supported in part by the Natural Science Foundation of China (61972400) and in part by the Jiangsu Natural Science Foundation (BK20181352)

Abstract Full Text(HTML) Figure(0) / Table(7) Related Papers Cited by
  • The concept of the signal-to-noise ratio (SNR) as a useful measure indicator of the robustness of $ (n, m) $-functions $ F = (f_1, \ldots, f_m) $ (cryptographic S-boxes) against differential power analysis (DPA), has received extensive attention during the previous decade. In this paper, we give an upper bound on the SNR of balanced $ (n, m) $-functions, and a clear upper bound regarding unbalanced $ (n, m) $-functions. Moreover, we derive some deep relationships between the SNR of $ (n, m) $-functions and three other cryptographic parameters (the maximum value of the absolute value of the Walsh transform, the sum-of-squares indicator, and the nonlinearity of its coordinates), respectively. In particular, we give a trade-off between the SNR and the refined transparency order of $ (n, m) $-functions. Finally, we prove that the SNR of $ (n, m) $-functions is not affine invariant, and data experiments verify this result.

     

    Addendum: The grant no. 2021ZYD0011 is added so it reads “Yu Zhou and Xinfeng Dong are supported in part by the National Key R & D Program of China (No. 2017YFB0802000, No. 2017YFB0802004), and in part by Sichuan Science and Technology Program (No. 2020JDJQ0076, 2021ZYD0011).” We apologize for any inconvenience this may cause.

    Mathematics Subject Classification: 06E30, 94C10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Walsh transform of $ f_i $

    $ \alpha=(\gamma, \gamma_1, \gamma_2) $ $ (\gamma, 0, 0) $ $ (\gamma, 0, 1) $ $ (\gamma, 1, 0) $ $ (\gamma, 1, 1) $
    $ \mathcal{F}(f_1\oplus \varphi_{\alpha}) $ $ 0 $ $ 0 $ $ 0 $ $ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $
    $ \mathcal{F}(f_2\oplus \varphi_{\alpha}) $ $ 0 $ $ 0 $ $ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $ $ 0 $
    $ \mathcal{F}(f_3\oplus \varphi_{\alpha}) $ $ 0 $ $ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $ $ 0 $ $ 0 $
    $ \mathcal{F}(f_4\oplus \varphi_{\alpha}) $ $ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $ $ 0 $ $ 0 $ $ 0 $
     | Show Table
    DownLoad: CSV

    Table 2.  The signal-to-noise ratio bounds on S-boxes $ F = (f_1, \ldots, f_m) $

    Ref. $ SNR $ S-Box type
    [11] $ 1\leq SNR\leq 2^{n/2} $ Balanced S-Boxes
    Theorem 15 $ SNR< 2^{n/2} $ Balanced S-Boxes
    [11] $ 1/m\leq SNR $ Unbalanced S-Boxes
    Theorem 16 $ SNR\leq \frac{m\cdot \sqrt{2^{3n}}}{m\cdot 2^n+2H_F} $ Unbalanced S-Boxes
    [11] $ 2^{n/2}/q\lesssim SNR $ Bent S-Boxes
    Corollary 1 $ SNR\leq \frac{2^{n}}{2^{n/2}-m+1} $ Bent S-Boxes
    Corollary 2 $ SNR=m\sqrt{\frac{2^{3n}}{\sum_{i=1}^m\mathcal{V}(f_i)}} $ $ f_i $ and $ f_j $ are perfectly
    uncorrelated $ (1\leq i<j\leq m) $
     | Show Table
    DownLoad: CSV

    Table 3.  Distribution of the SNR of $ (4, 4) $ S-boxes

    $ Class $ SNR(DPA)(F)$ _{(4, 4)} $ $ Number $ $ Per(\%) $
    0 1.612137 1 0.33
    1 1.663601 2 0.66
    2 1.691253 9 2.98
    3 1.705606 1 0.33
    4 1.783290 1 0.33
    5 1.976967 1 0.33
    6 2.000000 1 0.33
    7 2.023858 57 18.87
    8 2.074252 14 4.64
    9 2.128608 10 3.31
    10 2.187475 43 14.24
    11 2.218801 6 1.99
    12 2.251512 4 1.32
    13 2.398501 42 13.91
    14 2.483682 29 9.60
    15 2.529822 11 3.64
    16 2.578633 16 5.30
    17 2.685380 39 12.91
    18 2.806586 6 1.99
    19 2.945839 7 2.32
    20 3.023716 1 0.33
    21 3.108115 1 0.33
     | Show Table
    DownLoad: CSV

    Table 4.  The SNR of well known S-boxes

    Name of algorithm S-box SNR(DPA)(S-box)$ _{(4, 4)} $
    Lblock [22] E9F0D4AB128376C5 2.945839
    4BE9FD0A7C562813 2.806586
    1E7CFD06B593248A 2.806586
    768B0F3E9ACD5241 2.945839
    E5F072CD1849BA63 2.945839
    2DBCFE097A631845 2.806586
    B94E0FAD6C573812 2.945839
    DAF0E49B218375C6 2.945839
    87E5FD06BC9A2413 2.806586
    B5F0729D481CEA36 2.945839
    PRESENT [4] C56B90AD3EF84712 2.128608
    Piccolo [18] E4B238091A7F6C5D 3.108115
    SKINNY [3] C6901A2B385D4E7F 2.685380
    MANTIS [3] CAD3EBF789150246 1.663601
    Marvin [19] 021B83ED46F5C79A 3.023716
    Midori [1] CAD3EBF789150246 1.663601
    1053E2F7DA9BC846 2.128608
    Gift [2] 1A4C6F392DB7508E 2.398501
     | Show Table
    DownLoad: CSV

    Table 5.  Representatives for all 16 classes of optimal $ (4, 4) $ S-boxes [14]

    Class $ (4, 4) $ S-boxes
    $ G_0 $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 12, 9, 3, 14, 10, 5
    $ G_1 $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 5, 9, 10, 12
    $ G_2 $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 10, 12, 5, 9
    $ G_3 $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9
    $ G_4 $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 9, 11, 10, 14, 5, 3
    $ G_5 $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 3, 5
    $ G_6 $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 5, 3
    $ G_7 $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 14, 11, 10, 9, 3, 5
    $ G_8 $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 9, 5, 10, 11, 3, 12
    $ G_9 $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 3, 5, 9, 10, 12
    $ G_{10} $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 5, 10, 9, 3, 12
    $ G_{11} $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 5, 9, 12, 3
    $ G_{12} $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 9, 3, 12, 5
    $ G_{13} $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 9, 5, 11, 10, 3
    $ G_{14} $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 3, 9, 5, 10
    $ G_{15} $ 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 9, 3, 10, 5
     | Show Table
    DownLoad: CSV

    Table 6.  The SNR of affine equivalent S-boxes of 16 optimal $ (4, 4) $ S-boxes

    Class SNR(DPA)($ G_i $) $ RV $ $ DN $ Mean Variance
    $ G_0 $ 2.945839 [1.600000, 3.108115] 22 2.457354 0.110006
    $ G_1 $ 2.685380 [1.600000, 3.108115] 22 2.456126 0.108045
    $ G_2 $ 2.685380 [1.600000, 3.108115] 22 2.456967 0.108855
    $ G_3 $ 2.685380 [1.612137, 3.108115] 15 2.466327 0.102287
    $ G_4 $ 3.108115 [1.612137, 3.108115] 17 2.466608 0.102820
    $ G_5 $ 3.108115 [1.612137, 3.108115] 17 2.466729 0.104456
    $ G_6 $ 3.108115 [1.612137, 3.108115] 17 2.465285 0.102089
    $ G_7 $ 2.806586 [1.612137, 3.108115] 16 2.478125 0.092405
    $ G_8 $ 2.945839 [1.612137, 3.108115] 22 2.456613 0.108452
    $ G_9 $ 2.685380 [1.612137, 3.108115] 22 2.453230 0.110267
    $ G_{10} $ 2.685380 [1.612137, 3.108115] 22 2.452648 0.109412
    $ G_{11} $ 2.685380 [1.612137, 3.108115] 17 2.464596 0.101206
    $ G_{12} $ 2.685380 [1.612137, 3.108115] 17 2.448995 0.106486
    $ G_{13} $ 2.945839 [1.612137, 3.108115] 17 2.481046 0.096809
    $ G_{14} $ 2.945839 [1.612137, 3.108115] 21 2.465687 0.099087
    $ G_{15} $ 2.945839 [1.600000, 3.108115] 21 2.466658 0.101133
     | Show Table
    DownLoad: CSV

    Table 7.  Distribution of the SNR of affine equivalent S-boxes of $ G_0 $

    Class SNR(DPA)($ A\circ G_0 $) $ Number $ $ Per(\%) $
    0 1.600000 48 0.238095
    1 1.612137 120 0.595238
    2 1.663601 192 0.952381
    3 1.691253 312 1.547619
    4 1.705606 336 1.666667
    5 1.720331 144 0.714286
    6 1.783290 72 0.357143
    7 2.023858 792 3.928571
    8 2.074252 696 3.452381
    9 2.128608 624 3.095238
    10 2.187475 1968 9.761905
    11 2.218801 480 2.380962
    12 2.251512 432 2.142857
    13 2.398501 2328 11.547619
    14 2.483682 912 4.523810
    15 2.529822 2928 14.523810
    16 2.578633 1368 6.785714
    17 2.685380 3768 18.690476
    18 2.806586 672 3.333333
    19 2.945839 792 3.928571
    20 3.023716 240 1.190476
    21 3.108115 936 4.642857
     | Show Table
    DownLoad: CSV
  • [1] S. Banik, A. Bogdanov and T. Isobe, et al., Midori: A block cipher for low energy, in Advances in Cryptology - ASIACRYPT 2015. Part II, Lecture Notes in Comput. Sci., 9453, Springer, Heidelberg, 2015,411–436. doi: 10.1007/978-3-662-48800-3_17.
    [2] S. Banik, S. K. Pandey and T. Peyrin, et al., GIFT: A small present - Towards reaching the limit of lightweight encryption, in Cryptographic Hardware and Embedded Systems, Lecture Notes in Computer Science, 10529, Springer, Cham, 2017,321–345. doi: 10.1007/978-3-319-66787-4_16.
    [3] C. Beierle, J. Jean and S. Kölbl, et al., The SKINNY family of block ciphers and its low-latency variant MANTIS, in Advances in Cryptology - CRYPTO 2016. Part II, Lecture Notes in Comput. Sci., 9815, Springer, Berlin, 2016,123–153. doi: 10.1007/978-3-662-53008-5_5.
    [4] A. Bogdanov, L. R. Knudsen and G. Leander, et al., PRESENT: An ultra-lightweight block cipher, in Cryptographic Hardware and Embedded Systems - CHES 2007, Lecture Notes in Comput. Sci., 4727, Springer, 2007,450–466. doi: 10.1007/978-3-540-74735-2_31.
    [5] C. D. Cannière, Analysis and Design of Symmetric Encryption Algorithms, Ph.D thesis, Katholieke Universiteit Leuven, 2007.
    [6] C. Carlet, Boolean functions for cryptography and error-correcting codes, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, 2010,257-397. doi: 10.1017/CBO9780511780448.011.
    [7] C. Carlet, Vectorial Boolean functions for cryptography, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, 2010,398-470. doi: 10.1017/CBO9780511780448.012.
    [8] K. ChakrabortyS. Sarkar and S. Maitra, et al., Redefining the transparency order, Des. Codes Cryptogr., 82 (2017), 95-115.  doi: 10.1007/s10623-016-0250-3.
    [9] Y. Fei, Q. Luo and A. A. Ding, A statistical model for DPA with novel algorithmic confusion analysis, in Cryptographic Hardware and Embedded Systems - CHES 2012, Lecture Notes in Computer Science, 7428, Springer, 2012,233–250. doi: 10.1007/978-3-642-33027-8_14.
    [10] W. Fischer, B. M. Gammel, O. Kniffler and J. Velten, Differential power analysis of stream ciphers, in Topics in Cryptology - CT-RSA 2007, Lecture Notes in Comput. Sci., 4377, Springer, Berlin, 2006,257–270. doi: 10.1007/11967668_17.
    [11] S. Guilley, P. Hoogvorst and R. Pacalet, Differential power analysis model and some results, in Smart Card Research and Advanced Applications VI, IFIP International Federation for Information Processing, 153, Springer, Boston, MA, 2004,127–142. doi: 10.1007/1-4020-8147-2_9.
    [12] A. Heuser, O. Rioul and S. Guilley, A theoretical study of Kolmogorov-Smirnov distinguishers - Side-channel analysis vs. differential cryptanalysis, in Constructive Side-Channel Analysis and Secure Design, Lecture Notes in Comput. Sci., 8622, Springer, 2014, 9–28. doi: 10.1007/978-3-319-10175-0_2.
    [13] P. Kocher, J. Jaffe and B. Jun, Differential power analysis, in Advances in Cryptology - CRYPTO'99, Lecture Notes in Comput. Sci., 1666, Springer, 1999,388–397. doi: 10.1007/3-540-48405-1_25.
    [14] G. Leander and A. Poschmann, On the classification of 4 bit S-boxes, in Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., 4547, Springer, Berlin, 2007,159–176. doi: 10.1007/978-3-540-73074-3_13.
    [15] E. Pasalic, S. Maitra, T. Johansson and P. Sarkar, New constructions of resilient and correlation immune Boolean functions achieving upper bound on nonlinearity, in International Workshop on Coding and Cryptography, Electron. Notes Discrete Math., 6, Elsevier Sci. B. V., Amsterdam, 2001, 10pp. doi: 10.1016/S1571-0653(04)00167-2.
    [16] E. Prouff, DPA attacks and S-Boxes, in Fast Software Encryption, Lecture Notes in Comput. Sci., 3557, Springer, 2005,424–441. doi: 10.1007/11502760_29.
    [17] P. Sarkar and S. Maitra, Cross-correlation analysis of cryptographically useful Boolean functions and S-boxes, Theory Comput. Syst., 35 (2002), 39–57. doi: 10.1007/s00224-001-1019-1.
    [18] K. Shibutani, T. Isobe and H. Hiwatari, et al., Piccolo: An ultra-lightweight blockcipher, in Cryptographic Hardware and Embedded Systems - CHES 2011, Lecture Notes in Comput. Sci., 6917, Springer, 2011,342–357. doi: 10.1007/978-3-642-23951-9_23.
    [19] M. A. Simplicio Jr., P. D. F. F. S. Barbuda and P. S. L. M. Barreto, et al., The MARVIN message authentication code and the LETTERSOUP authenticated encryption scheme, Security Comm. Networks, 2 (2009), 165–180. doi: 10.1002/sec.66.
    [20] J. J. Son, J. I. Lim, S. Chee and S. H. Sung, Global avalanche characteristics and nonlinearity of balanced Boolean function, Inform. Process. Lett., 65 (1998), 139–144. doi: 10.1016/S0020-0190(98)00009-X.
    [21] Q. Wang and P. Stănică, Transparency order for Boolean functions: Analysis and construction, Des. Codes Cryptogr., 87 (2019), 2043–2059. doi: 10.1007/s10623-019-00604-1.
    [22] W. Wu and L. Zhang, LBlock: A lightweight block cipher, in Applied Cryptography and Network Security, Lecture Notes in Comput. Sci., 6715, Springer, 2011,327–344. doi: 10.1007/978-3-642-21554-4_19.
    [23] X.-M. Zhang and Y. Zheng, GAC–The criterion for global avalanche characteristics of cryptographic functions, J.UCS, 1 (1995), 320–337. doi: 10.1007/978-3-642-80350-5_30.
    [24] Y. Zheng and X.-M. Zhang, On plateaued functions, IEEE Trans. Inform. Theory, 47 (2001), 1215–1223. doi: 10.1109/18.915690.
    [25] Y. Zhou, L. Wang, W. Wang, X. Dong and X. Du, One sufficient and necessary condition on balanced Boolean functions with $\sigma_f = 2^2n+2^{n+3}(m\geq 3)$, Internat. J. Found. Comput. Sci., 25 (2014), 343–353. doi: 10.1142/S0129054114500178.
    [26] Y. Zhou, M. Xie and G. Xiao, On the global avalanche characteristics between two Boolean functions and the higher order nonlinearity, Inform. Sci., 180 (2010), 256–265. doi: 10.1016/j.ins.2009.09.012.
    [27] Y. Zhou, W. Zhang, S. Zhu and G. Xiao, The global avalanche characteristics of two Boolean functions and algebraic immunity, Int. J. Comput. Math., 89 (2012), 2165–2179. doi: 10.1080/00207160.2012.712689.
  • 加载中

Tables(7)

SHARE

Article Metrics

HTML views(1122) PDF downloads(518) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return