\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rotated $ A_n $-lattice codes of full diversity

  • * Corresponding author

    * Corresponding author 

This work was supported by FAPESP 2013/25977-7 and CNPq 429346/2018-2

Abstract Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • Some important properties of lattices are packing density and full diversity, which may be good for signal transmission over both Gaussian and Rayleigh fading channel, respectively. The algebraic lattices are constructed through twisted homomorphism of some modules in the ring of integers of a number field $ \mathbb{K} $. In this paper, we present a construction of some families of rotated $ A_n- $lattices, for $ n = 2^{r-2}-1 $, $ r \geq 4 $, via totally real subfield of cyclotomic fields. Furthermore, closed-form expressions for the minimum product distance of those lattices are obtained through algebraic properties.

    Mathematics Subject Classification: Primary: 52C07; Secondary: 11H31, 11H71.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Normalized minimum product distance versus center density (from [5,12,15,16,18,19] and the results presented here)

    $r $ $n $ $\sqrt[n]{d_{p}(\mathbb{Z}^n)} $ $\sqrt[n]{d_{p}(D_n)} $ $\sqrt[n]{d_{p}(A_n)} $ $\delta(\mathbb{Z}^n) $ $\delta(D_n) $ $\delta(A_n) $
    $4 $ $3 $ $0.52275 $ $0.41491 $ $0.44544 $ $0.12500 $ $0.17677 $ $0.17677 $
    $5 $ $7 $ $0.30080 $ $- $ $0.27602 $ $0.00780 $ $0.04419 $ $0.03125 $
    $6 $ $15 $ $0.20138 $ $0.19229 $ $0.18513 $ $0.00003 $ $0.00276 $ $0.00138 $
    $7 $ $31 $ $0.06220 $ $- $ $0.12782 $ $10^{-10} $ $10^{-5} $ $10^{-6} $
    $8 $ $63 $ $0.09221 $ $0.09120 $ $0.08936 $ $10^{-19} $ $10^{-10} $ $10^{-11} $
    $9 $ $127 $ $0.04542 $ $- $ $0.06284 $ $10^{-39} $ $10^{-20} $ $10^{-21} $
    $10 $ $255 $ $0.03172 $ $- $ $0.04431 $ $10^{-77} $ $10^{-39} $ $10^{-40} $
    $11 $ $511 $ $0.01819 $ $- $ $0.03129 $ $10^{-154} $ $10^{-78} $ $10^{-79} $
    $12 $ $1023 $ $0.01569 $ $- $ $0.02211 $ $10^{-308} $ $10^{-155} $ $10^{-152} $
    $13 $ $2047 $ $0.00522 $ $- $ $0.01563 $ $10^{-617} $ $10^{-309} $ $10^{-310} $
    $14 $ $4095 $ $0.01106 $ $0.01106 $ $0.01106 $ $10^{-1233} $ $10^{-617} $ $10^{-619} $
    $15 $ $8191 $ $0.00163 $ $- $ $0.00781 $ $10^{-2466} $ $10^{-1234} $ $10^{-1235} $
    $16 $ $16383 $ $0.00319 $ $- $ $0.00552 $ $10^{-4932} $ $10^{-2467} $ $10^{-2468} $
    $17 $ $32767 $ $0.00130 $ $- $ $0.00390 $ $10^{-9864} $ $10^{-4933} $ $10^{-4935} $
    $18 $ $65535 $ $0.00276 $ $0.00276 $ $0.00276 $ $10^{-19729} $ $10^{-9865} $ $10^{-9867} $
    $19 $ $131071 $ $0.00079 $ $- $ $0.00195 $ $10^{-39457} $ $10^{-19729} $ $10^{-19731} $
    $20 $ $262143 $ $0.00138 $ $0.00138 $ $0.00138 $ $10^{-78913} $ $10^{-39457} $ $10^{-39460} $
     | Show Table
    DownLoad: CSV
  • [1] E. Bayer-Fluckiger, Ideal lattices, in A Panorama of Number Theory or the View from Baker's Garden, Cambridge Univ. Press, Cambridge, 2002,165-184. doi: 10.1017/CBO9780511542961.012.
    [2] E. Bayer-Fluckiger, Lattices and number fields, in Algebraic Geometry: Hirzebruch 70, Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999, 69–84. doi: 10.1090/conm/241/03628.
    [3] E. Bayer-Fluckiger, Upper bounds for Euclidean minima of algebraic number fields, J. Number Theory, 121 (2006), 305-323.  doi: 10.1016/j.jnt.2006.03.002.
    [4] E. Bayer-Fluckiger and G. Nebe, On the Euclidian minimum of some real number fields, J. Théor. Nombres Bordeaux, 17 (2005), 437–454. doi: 10.5802/jtnb.500.
    [5] E. Bayer-Fluckiger, F. Oggier and E. Viterbo, New algebraic constructions of rotated $\mathbb{Z}^n$-lattice constellations for the Rayleigh fading channel, IEEE Trans. Inform. Theory, 50 (2004), 702–714. doi: 10.1109/TIT.2004.825045.
    [6] E. Bayer-Fluckiger and I. Suarez, Ideal lattices over totally real number fields and Euclidean minima, Arch. Math. (Basel), 86 (2006), 217–225. doi: 10.1007/s00013-005-1469-9.
    [7] K. Boullé and J. C. Belfiore, Modulation scheme design for the Rayleigh fading channel, Proc. Conf. Information Science and System, (1992), 288–293.
    [8] J. Boutros, E. Viterbo, C. Rastello and J.-C. Belfiore, Good lattice constellations for both Rayleigh fading and Gaussian channels, IEEE Trans. Inform. Theory, 42 (1996), 502–518. doi: 10.1109/18.485720.
    [9] H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. of Math. (2), 170 (2009), 1003–1050. doi: 10.4007/annals.2009.170.1003.
    [10] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Fundamental Principles of Mathematical Sciences, 290, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4757-2249-9.
    [11] J. H. Conway and N. J. A. Sloane, The optimal isodual lattice quantizer in three dimensions, Adv. Math. Commun., 1 (2007), 257–260. doi: 10.3934/amc.2007.1.257.
    [12] P. Elia, B. A. Sethuraman and P. V. Kumar, Perfect space-time codes for any number of antennas, IEEE Trans. Inform. Theory, 53 (2007), 3853–3868. doi: 10.1109/TIT.2007.907502.
    [13] X. Hou and F. Oggier, Modular lattices from a variation of Construction A over number fields, Adv. Math. Commun., 11 (2017), 719–745. doi: 10.3934/amc.2017053.
    [14] G. C. Jorge, A. A. de Andrade, S. I. R. Costa and J. E. Strapasson, Algebraic constructions of densest lattices, J. Algebra, 429 (2015), 218–235. doi: 10.1016/j.jalgebra.2014.12.044.
    [15] G. C. Jorge and S. I. R. Costa, On rotated $D_n$-lattices constructed via totally real number fields, Arch. Math. (Basel), 100 (2013), 323–332. doi: 10.1007/s00013-013-0501-8.
    [16] G. C. Jorge, A. J. Ferrari and S. I. R. Costa, Rotated $D_n$-lattices, J. Number Theory, 132 (2012), 2397–2406. doi: 10.1016/j.jnt.2012.05.002.
    [17] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems. A Cryptographic Perspective, The Kluwer International Series in Engineering and Computer Science, 671, Kluwer Academic Publishers, Boston, MA, 2002. doi: 10.1007/978-1-4615-0897-7.
    [18] F. Oggier, Algebraic Methods for Channel Coding, Ph.D Thesis, École Polytechnique Fédérale in Lausanne, Lausanne, 2005.
    [19] F. Oggier and E. Bayer-Fluckiger, Best rotated cubic lattice constellations for the Rayleigh fading channel, Proceedings of IEEE International Symposium on Information Theory, Yokohama, Japan, 2003.
    [20] P. Samuel, Algebraic Theory of Numbers, Houghton Mifflin Co., Boston, MA, 1970,109pp.
    [21] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-1934-7.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(1674) PDF downloads(616) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return