[1]
|
E. Bayer-Fluckiger, Ideal lattices, in A Panorama of Number Theory or the View from Baker's
Garden, Cambridge Univ. Press, Cambridge, 2002,165-184.
doi: 10.1017/CBO9780511542961.012.
|
[2]
|
E. Bayer-Fluckiger, Lattices and number fields, in Algebraic Geometry: Hirzebruch 70, Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999, 69–84.
doi: 10.1090/conm/241/03628.
|
[3]
|
E. Bayer-Fluckiger, Upper bounds for Euclidean minima of algebraic number fields, J. Number Theory, 121 (2006), 305-323.
doi: 10.1016/j.jnt.2006.03.002.
|
[4]
|
E. Bayer-Fluckiger and G. Nebe, On the Euclidian minimum of some real number fields, J. Théor. Nombres Bordeaux, 17 (2005), 437–454.
doi: 10.5802/jtnb.500.
|
[5]
|
E. Bayer-Fluckiger, F. Oggier and E. Viterbo, New algebraic constructions of rotated $\mathbb{Z}^n$-lattice constellations for the Rayleigh fading channel, IEEE Trans. Inform. Theory, 50 (2004), 702–714.
doi: 10.1109/TIT.2004.825045.
|
[6]
|
E. Bayer-Fluckiger and I. Suarez, Ideal lattices over totally real number fields and Euclidean minima, Arch. Math. (Basel), 86 (2006), 217–225.
doi: 10.1007/s00013-005-1469-9.
|
[7]
|
K. Boullé and J. C. Belfiore, Modulation scheme design for the Rayleigh fading channel, Proc. Conf. Information Science and System, (1992), 288–293.
|
[8]
|
J. Boutros, E. Viterbo, C. Rastello and J.-C. Belfiore, Good lattice constellations for both Rayleigh fading and Gaussian channels, IEEE Trans. Inform. Theory, 42 (1996), 502–518.
doi: 10.1109/18.485720.
|
[9]
|
H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. of Math. (2), 170 (2009), 1003–1050.
doi: 10.4007/annals.2009.170.1003.
|
[10]
|
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Fundamental Principles of Mathematical Sciences, 290, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4757-2249-9.
|
[11]
|
J. H. Conway and N. J. A. Sloane, The optimal isodual lattice quantizer in three dimensions, Adv. Math. Commun., 1 (2007), 257–260.
doi: 10.3934/amc.2007.1.257.
|
[12]
|
P. Elia, B. A. Sethuraman and P. V. Kumar, Perfect space-time codes for any number of antennas, IEEE Trans. Inform. Theory, 53 (2007), 3853–3868.
doi: 10.1109/TIT.2007.907502.
|
[13]
|
X. Hou and F. Oggier, Modular lattices from a variation of Construction A over number fields, Adv. Math. Commun., 11 (2017), 719–745.
doi: 10.3934/amc.2017053.
|
[14]
|
G. C. Jorge, A. A. de Andrade, S. I. R. Costa and J. E. Strapasson, Algebraic constructions of densest lattices, J. Algebra, 429 (2015), 218–235.
doi: 10.1016/j.jalgebra.2014.12.044.
|
[15]
|
G. C. Jorge and S. I. R. Costa, On rotated $D_n$-lattices constructed via totally real number fields, Arch. Math. (Basel), 100 (2013), 323–332.
doi: 10.1007/s00013-013-0501-8.
|
[16]
|
G. C. Jorge, A. J. Ferrari and S. I. R. Costa, Rotated $D_n$-lattices, J. Number Theory, 132 (2012), 2397–2406.
doi: 10.1016/j.jnt.2012.05.002.
|
[17]
|
D. Micciancio and S. Goldwasser, Complexity of Lattice Problems. A Cryptographic Perspective, The Kluwer International Series in Engineering and Computer Science, 671, Kluwer Academic Publishers, Boston, MA, 2002.
doi: 10.1007/978-1-4615-0897-7.
|
[18]
|
F. Oggier, Algebraic Methods for Channel Coding, Ph.D Thesis, École Polytechnique Fédérale in Lausanne, Lausanne, 2005.
|
[19]
|
F. Oggier and E. Bayer-Fluckiger, Best rotated cubic lattice constellations for the Rayleigh fading channel, Proceedings of IEEE International Symposium on Information Theory, Yokohama, Japan, 2003.
|
[20]
|
P. Samuel, Algebraic Theory of Numbers, Houghton Mifflin Co., Boston, MA, 1970,109pp.
|
[21]
|
L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-1934-7.
|