-
Previous Article
New quantum codes from constacyclic codes over the ring $ R_{k,m} $
- AMC Home
- This Issue
-
Next Article
On finite length nonbinary sequences with large nonlinear complexity over the residue ring $ \mathbb{Z}_{m} $
Codes over $ \frak m $-adic completion rings
Department of Mathematics, Bu Ali Sina University, Hamedan, Iran |
The theory of linear codes over finite rings has been generalized to linear codes over infinite rings in two special cases; the ring of $ p $-adic integers and formal power series ring. These rings are examples of complete discrete valuation rings (CDVRs). In this paper, we generalize the theory of linear codes over the above two rings to linear codes over complete local principal ideal rings. In particular, we obtain the structure of linear and constacyclic codes over CDVRs. For this generalization, first we study linear codes over $ \hat{R}_{ \frak m} $, where $ R $ is a commutative Noetherian ring, $ \frak m = \langle \gamma\rangle $ is a maximal ideal of $ R $, and $ \hat{R}_{ \frak m} $ denotes the $ \frak m $-adic completion of $ R $. We call these codes, $ \frak m $-adic codes. Using the structure of $ \frak m $-adic codes, we present the structure of linear and constacyclic codes over complete local principal ideal rings.
References:
[1] |
M. F. Atiyah and I. G. Macdonald, Intrduction to Commutative Algebra, University of Oxford, 1969.
doi: 10.1007/978-1-4612-0873-0. |
[2] |
A. R. Calderbank and N. J. A. Sloane,
Modular and $p$-adic cyclic codes, Des. Codes Cryptogr., 6 (1995), 21-35.
doi: 10.1007/BF01390768. |
[3] |
I. S. Cohen,
On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106.
doi: 10.1090/S0002-9947-1946-0016094-3. |
[4] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[5] |
S. T. Dougherty, J. Kim and H. Kulosman,
MDS codes over finite principal ideal rings, MDS Codes Over Finite Principal Ideal Rings, 50 (2009), 77-92.
doi: 10.1007/s10623-008-9215-5. |
[6] |
S. T. Dougherty, S. Y. Kim and Y. H. Park,
Lifted codes and their weight enumerators, Discrete. Math., 305 (2005), 123-135.
doi: 10.1016/j.disc.2005.08.004. |
[7] |
S. T. Dougherty, H. Liu and Y. H. Park,
Lifted codes over finite chain rings, Math. J. Okayama Univ., 53 (2011), 39-53.
|
[8] |
S. T. Dougherty and H. Liu,
Cyclic codes over formal power series rings, Acta Mathematica Scientia, 31B (2011), 331-343.
doi: 10.1016/S0252-9602(11)60233-6. |
[9] |
S. T. Dougherty and Y. H. Park,
Codes over the $p$-adic integers, Des. Codes Cryptogr., 39 (2006), 65-80.
doi: 10.1007/s10623-005-2542-x. |
[10] |
D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, 1995.
doi: 10.1007/978-1-4612-0873-0. |
[11] |
E. E. Enochs and O. M. G. Jenda, Relative Homolodical Algebra, Walter de Gruyter, 2000.
doi: 10.1007/978-1-4612-0873-0. |
[12] |
K. Guenda and T. A. Gulliver,
MDS and self-dual codes over rings, Finite Fields Appl., 18 (2012), 1061-1075.
doi: 10.1016/j.ffa.2012.09.003. |
[13] |
S. Jean-Pierre, Local Fields, Berlin, New York, 1980.
doi: 10.1007/978-1-4612-0873-0. |
[14] |
F. J. Makwilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977.
doi: 10.1007/978-1-4612-0873-0. |
[15] |
H. Matsumura, Commutative Ring Theory, Cambridge, 1989.
doi: 10.1007/978-1-4612-0873-0. |
[16] |
B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
doi: 10.1007/978-1-4612-0873-0. |
[17] |
K. R. McLean,
Commutative Artinian principal ideal rings, Proc. London Math. Soc., 26 (1973), 249-272.
doi: 10.1112/plms/s3-26.2.249. |
[18] |
K. Samei and S. Mahmoudi,
Cyclic $R$-additive codes, Discrete Math., 340 (2017), 1657-1668.
doi: 10.1016/j.disc.2016.11.007. |
[19] |
K. Samei and S. Mahmoudi,
Singleton Bundes for $R$-additive codes, Adv. Math. Commun., 12 (2018), 107-114.
doi: 10.3934/amc.2018006. |
[20] |
P. Solé, Open problems 2: Cyclic codes over rings and $p$-adic fields, in (G. Cohen and J. Wolfmann eds.) Coding Theory and Applications, Lect. Notes Comp. Sci., 338, Springer-Verlag, 1988.
doi: 10.1007/BFb0019872. |
show all references
References:
[1] |
M. F. Atiyah and I. G. Macdonald, Intrduction to Commutative Algebra, University of Oxford, 1969.
doi: 10.1007/978-1-4612-0873-0. |
[2] |
A. R. Calderbank and N. J. A. Sloane,
Modular and $p$-adic cyclic codes, Des. Codes Cryptogr., 6 (1995), 21-35.
doi: 10.1007/BF01390768. |
[3] |
I. S. Cohen,
On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106.
doi: 10.1090/S0002-9947-1946-0016094-3. |
[4] |
H. Q. Dinh and S. R. López-Permouth,
Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789. |
[5] |
S. T. Dougherty, J. Kim and H. Kulosman,
MDS codes over finite principal ideal rings, MDS Codes Over Finite Principal Ideal Rings, 50 (2009), 77-92.
doi: 10.1007/s10623-008-9215-5. |
[6] |
S. T. Dougherty, S. Y. Kim and Y. H. Park,
Lifted codes and their weight enumerators, Discrete. Math., 305 (2005), 123-135.
doi: 10.1016/j.disc.2005.08.004. |
[7] |
S. T. Dougherty, H. Liu and Y. H. Park,
Lifted codes over finite chain rings, Math. J. Okayama Univ., 53 (2011), 39-53.
|
[8] |
S. T. Dougherty and H. Liu,
Cyclic codes over formal power series rings, Acta Mathematica Scientia, 31B (2011), 331-343.
doi: 10.1016/S0252-9602(11)60233-6. |
[9] |
S. T. Dougherty and Y. H. Park,
Codes over the $p$-adic integers, Des. Codes Cryptogr., 39 (2006), 65-80.
doi: 10.1007/s10623-005-2542-x. |
[10] |
D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, 1995.
doi: 10.1007/978-1-4612-0873-0. |
[11] |
E. E. Enochs and O. M. G. Jenda, Relative Homolodical Algebra, Walter de Gruyter, 2000.
doi: 10.1007/978-1-4612-0873-0. |
[12] |
K. Guenda and T. A. Gulliver,
MDS and self-dual codes over rings, Finite Fields Appl., 18 (2012), 1061-1075.
doi: 10.1016/j.ffa.2012.09.003. |
[13] |
S. Jean-Pierre, Local Fields, Berlin, New York, 1980.
doi: 10.1007/978-1-4612-0873-0. |
[14] |
F. J. Makwilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977.
doi: 10.1007/978-1-4612-0873-0. |
[15] |
H. Matsumura, Commutative Ring Theory, Cambridge, 1989.
doi: 10.1007/978-1-4612-0873-0. |
[16] |
B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
doi: 10.1007/978-1-4612-0873-0. |
[17] |
K. R. McLean,
Commutative Artinian principal ideal rings, Proc. London Math. Soc., 26 (1973), 249-272.
doi: 10.1112/plms/s3-26.2.249. |
[18] |
K. Samei and S. Mahmoudi,
Cyclic $R$-additive codes, Discrete Math., 340 (2017), 1657-1668.
doi: 10.1016/j.disc.2016.11.007. |
[19] |
K. Samei and S. Mahmoudi,
Singleton Bundes for $R$-additive codes, Adv. Math. Commun., 12 (2018), 107-114.
doi: 10.3934/amc.2018006. |
[20] |
P. Solé, Open problems 2: Cyclic codes over rings and $p$-adic fields, in (G. Cohen and J. Wolfmann eds.) Coding Theory and Applications, Lect. Notes Comp. Sci., 338, Springer-Verlag, 1988.
doi: 10.1007/BFb0019872. |
[1] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[2] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[3] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[4] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[5] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]