-
Previous Article
Infinite families of $ 3 $-designs from o-polynomials
- AMC Home
- This Issue
-
Next Article
Infinite families of 2-designs from a class of non-binary Kasami cyclic codes
Codes with few weights arising from linear sets
Dipartimento di Matematica e Fisica, , Università degli Studi della Campania "Luigi Vanvitelli", I– 81100 Caserta, Italy |
In this article we present a class of codes with few weights arising from a special type of linear sets. We explicitly show the weights of such codes, their weight enumerators and possible choices for their generator matrices. In particular, our construction yields linear codes with three weights and, in some cases, almost MDS codes. The interest for these codes relies on their applications to authentication codes and secret schemes, and their connections with further objects such as association schemes and graphs.
References:
[1] |
A. Aguglia and L. Giuzzi,
Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.
doi: 10.1007/s10623-016-0302-8. |
[2] |
T. L. Alderson,
A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.
doi: 10.22108/toc.2019.112621.1584. |
[3] |
D. Bartoli, C. Zanella and F. Zullo,
A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.
doi: 10.26493/1855-3974.2137.7fa. |
[4] |
A. Blokhuis and M. Lavrauw,
Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.
doi: 10.1023/A:1005283806897. |
[5] |
R. Calderbank and J. M. Goethals,
Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.
|
[6] |
A. R. Calderbank and W. M. Kantor,
The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.
doi: 10.1112/blms/18.2.97. |
[7] |
B. Csajbók, G. Marino, O. Polverino and C. Zanella,
A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.
doi: 10.1016/j.laa.2018.02.027. |
[8] |
B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp.
doi: 10.1016/j.disc.2020.111985. |
[9] |
B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590. Google Scholar |
[10] |
B. Csajbók, G. Marino and F. Zullo,
New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.
doi: 10.1016/j.ffa.2018.08.001. |
[11] |
M. A. de Boer,
Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.
doi: 10.1007/BF00124590. |
[12] |
P. Delsarte,
Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8. |
[13] |
K. Ding and C. Ding,
A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861. |
[14] |
K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882. Google Scholar |
[15] |
C. Ding, C. Li, N. Li and Z. Zhou,
Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.
doi: 10.1016/j.disc.2015.09.001. |
[16] |
C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124.
doi: 10.1142/9789812832245_0009. |
[17] |
C. Ding and H. Niederreiter,
Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.
doi: 10.1109/TIT.2007.896886. |
[18] |
C. Ding and X. Wang,
A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011. |
[19] |
N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp. |
[20] |
È. Gabidulin,
Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16.
|
[21] |
A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108.
doi: 10.1109/ISIT.2005.1523717. |
[22] |
M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001. |
[23] |
D. Liebhold and G. Nebe,
Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.
doi: 10.1007/s00013-016-0949-4. |
[24] |
G. Lunardon,
MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.
doi: 10.1016/j.jcta.2017.01.002. |
[25] |
G. Lunardon, R. Trombetti and Y. Zhou,
Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.
doi: 10.1016/j.jcta.2018.05.004. |
[26] |
G. Lunardon, R. Trombetti and Y. Zhou,
On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.
doi: 10.1007/s10801-017-0755-5. |
[27] |
S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214. |
[28] |
V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685. Google Scholar |
[29] |
G. Marino, M. Montanucci and F. Zullo,
MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.
doi: 10.1016/j.laa.2020.01.004. |
[30] |
O. Polverino and F. Zullo,
On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.
doi: 10.1016/j.laa.2020.05.009. |
[31] |
J. Sheekey,
A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.
doi: 10.3934/amc.2016019. |
[32] |
J. Sheekey and G. Van de Voorde,
Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.
doi: 10.1007/s10623-019-00703-z. |
[33] |
M. Shi and P. Solé,
Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.
doi: 10.1007/s10623-019-00628-7. |
[34] |
M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007.
doi: 10.1090/surv/139. |
[35] |
B. Wu and Z. Liu,
Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.
doi: 10.1016/j.ffa.2013.03.003. |
[36] |
Y. Wu, Q. Yansheng and X. Shi,
At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.
doi: 10.1007/s10623-018-00595-5. |
[37] |
C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp.
doi: 10.1016/j.disc.2019.111800. |
[38] |
G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643. Google Scholar |
show all references
References:
[1] |
A. Aguglia and L. Giuzzi,
Intersection sets, three-character multisets and associated codes, Des. Codes Cryptogr., 83 (2017), 269-282.
doi: 10.1007/s10623-016-0302-8. |
[2] |
T. L. Alderson,
A note on full weight spectrum codes, Trans. on Combinatorics, 8 (2019), 15-22.
doi: 10.22108/toc.2019.112621.1584. |
[3] |
D. Bartoli, C. Zanella and F. Zullo,
A new family of maximum scattered linear sets in $\text{PG}(1, q^6)$, Ars Math. Contemp., 19 (2020), 125-145.
doi: 10.26493/1855-3974.2137.7fa. |
[4] |
A. Blokhuis and M. Lavrauw,
Scattered spaces with respect to a spread in $\text{PG}(n, q)$, Geom. Dedicata, 81 (2000), 231-243.
doi: 10.1023/A:1005283806897. |
[5] |
R. Calderbank and J. M. Goethals,
Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.
|
[6] |
A. R. Calderbank and W. M. Kantor,
The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.
doi: 10.1112/blms/18.2.97. |
[7] |
B. Csajbók, G. Marino, O. Polverino and C. Zanella,
A new family of MRD-codes, Linear Algebra Appl., 548 (2018), 203-220.
doi: 10.1016/j.laa.2018.02.027. |
[8] |
B. Csajbók, G. Marino, O. Polverino and Y. Zhou, Maximum Rank-Distance codes with maximum left and right idealisers, Discrete Math., 343 (2020), 111985, 16pp.
doi: 10.1016/j.disc.2020.111985. |
[9] |
B. Csajbók, G. Marino, O. Polverino and F. Zullo, Generalising the scattered property of subspaces, in Combinatorica, arXiv: 1906.10590. Google Scholar |
[10] |
B. Csajbók, G. Marino and F. Zullo,
New maximum scattered linear sets of the projective line, Finite Fields Appl., 54 (2018), 133-150.
doi: 10.1016/j.ffa.2018.08.001. |
[11] |
M. A. de Boer,
Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.
doi: 10.1007/BF00124590. |
[12] |
P. Delsarte,
Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8. |
[13] |
K. Ding and C. Ding,
A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861. |
[14] |
K. Ding K. and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882. Google Scholar |
[15] |
C. Ding, C. Li, N. Li and Z. Zhou,
Three-weight cyclic codes and their weight distributions, Discret. Math., 339 (2016), 415-427.
doi: 10.1016/j.disc.2015.09.001. |
[16] |
C. Ding, J. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Proc. Ist Int. Workshop Coding theory and Cryptogr., (2008), 119–124.
doi: 10.1142/9789812832245_0009. |
[17] |
C. Ding and H. Niederreiter,
Cyclotomic linear codes of order $3$, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.
doi: 10.1109/TIT.2007.896886. |
[18] |
C. Ding and X. Wang,
A coding theory construction of new systematic authentication codes, Theoretical computer science, 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011. |
[19] |
N. Durante, On sets with few intersection numbers in finite projective and affine spaces, Electron. J. Combin., 21 (2014), 4.13, 18 pp. |
[20] |
È. Gabidulin,
Theory of codes with maximum rank distance, Problems of Information Transmission, 21 (1985), 3-16.
|
[21] |
A. Kshevetskiy and E. Gabidulin, The new construction of rank codes, International Symposium on Information Theory, (2005), 2105–2108.
doi: 10.1109/ISIT.2005.1523717. |
[22] |
M. Lavrauw, Scattered Spaces with Respect to Spreads, and Eggs in Finite Projective Spaces, Ph.D thesis, Eindhoven University of Technology, 2001. |
[23] |
D. Liebhold and G. Nebe,
Automorphism groups of Gabidulin-like codes, Arch. Math., 107 (2016), 355-366.
doi: 10.1007/s00013-016-0949-4. |
[24] |
G. Lunardon,
MRD-codes and linear sets, J. Combin. Theory Ser. A, 149 (2017), 1-20.
doi: 10.1016/j.jcta.2017.01.002. |
[25] |
G. Lunardon, R. Trombetti and Y. Zhou,
Generalized twisted gabidulin codes, J. Combin. Theory Ser. A, 159 (2018), 79-106.
doi: 10.1016/j.jcta.2018.05.004. |
[26] |
G. Lunardon, R. Trombetti and Y. Zhou,
On kernels and nuclei of rank metric codes, J. Algebraic Combin., 46 (2017), 313-340.
doi: 10.1007/s10801-017-0755-5. |
[27] |
S. Mehta, V. Saraswat and S. Sen, Secret sharing using near-MDS codes, Codes, Cryptology, and Information Security (C2SI 2019), LNCS, Springer, 11445 (2019), 195–214. |
[28] |
V. Napolitano, O. Polverino, G. Zini and F. Zullo, Linear sets from projection of Desarguesian spreads, arXiv: 2001.08685. Google Scholar |
[29] |
G. Marino, M. Montanucci and F. Zullo,
MRD-codes arising from the trinomial $x^q + x^{q^3}+ cx^{q^5} \in {\mathbb F}_{q^6}[x]$, Linear Algebra Appl., 591 (2020), 99-114.
doi: 10.1016/j.laa.2020.01.004. |
[30] |
O. Polverino and F. Zullo,
On the number of roots of some linearized polynomials, Linear Algebra Appl., 601 (2020), 189-218.
doi: 10.1016/j.laa.2020.05.009. |
[31] |
J. Sheekey,
A new family of linear maximum rank distance codes, Adv. Math. Commun., 10 (2016), 475-488.
doi: 10.3934/amc.2016019. |
[32] |
J. Sheekey and G. Van de Voorde,
Rank-metric codes, linear sets and their duality, Des. Codes Cryptogr., 88 (2020), 655-675.
doi: 10.1007/s10623-019-00703-z. |
[33] |
M. Shi and P. Solé,
Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptogr., 87 (2019), 2395-2404.
doi: 10.1007/s10623-019-00628-7. |
[34] |
M. Tsfasman, S. Vlăduţ and D. Nogin, Algebraic Geometric Codes: Basic Notions, Mathematical Surveys and Monographs, American Mathematical Society, 2007.
doi: 10.1090/surv/139. |
[35] |
B. Wu and Z. Liu,
Linearized polynomials over finite fields revisited, Finite Fields Appl., 22 (2013), 79-100.
doi: 10.1016/j.ffa.2013.03.003. |
[36] |
Y. Wu, Q. Yansheng and X. Shi,
At most three-weight binary linear codes from generalized Moisio's exponential sums, Designs, Codes and Cryptogr., 87 (2019), 1927-1943.
doi: 10.1007/s10623-018-00595-5. |
[37] |
C. Zanella and F. Zullo, Vertex properties of maximum scattered linear sets of $\text{PG}(1, q^n)$, Discrete Math., 343 (2020), 111800, 14pp.
doi: 10.1016/j.disc.2019.111800. |
[38] |
G. Zini and F. Zullo, Scattered subspaces and related codes, arXiv: 2007.04643. Google Scholar |
conditions | references | |||
[12,20,21] | ||||
[31,25] | ||||
[7,30] | ||||
[10,29] | ||||
[3,37] | ||||
[8] | ||||
[8] | ||||
[8] | ||||
[8] | ||||
[7] |
conditions | references | |||
[12,20,21] | ||||
[31,25] | ||||
[7,30] | ||||
[10,29] | ||||
[3,37] | ||||
[8] | ||||
[8] | ||||
[8] | ||||
[8] | ||||
[7] |
[1] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[2] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[3] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[4] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[5] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[6] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[7] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[8] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[9] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[10] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[11] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[12] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[13] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[14] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[15] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[16] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[17] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[18] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[19] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[20] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]