doi: 10.3934/amc.2020131
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A new class of optimal wide-gap one-coincidence frequency-hopping sequence sets

School of Mathematics and Big Data, Dezhou University, Dezhou, 253023, China

* Corresponding author: Wenli Ren

Received  July 2020 Revised  November 2020 Early access January 2021

Fund Project: This research is supported in part by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2018LA001, ZR2018LA003) and in part by the Program of Science and Technology of Shandong Province (Grant Nos. J16LI58, J18KB099)

In this paper, we propose a new class of optimal one-coincidence FHS (OC-FHS) sets with respect to the Peng-Fan bounds, including prime sequence sets and HMC sequence sets as special cases. Thereafter, through investigating their properties, we determine all of the FHS distances in the OC-FHS set. Finally, for a given positive integer, we also propose a new class of wide-gap one-coincidence FHS (WG-OC-FHS) sets where the FHS gap is larger than the given positive integer. Moreover, such a WG-OC-FHS set is optimal with respect to the WG-Lempel-Greenberger bound and the WG-Peng-Fan bounds simultaneously.

Citation: Wenli Ren, Feng Wang. A new class of optimal wide-gap one-coincidence frequency-hopping sequence sets. Advances in Mathematics of Communications, doi: 10.3934/amc.2020131
References:
[1]

Z. F. CaoG. N. Ge and Y. Miao, Combinatorial characterizations of one-coincidence frequency-hopping sequences, Des. Codes Cryptogr., 41 (2006), 177-184.  doi: 10.1007/s10623-006-9007-8.  Google Scholar

[2]

W. D. Chen, Frequency hopping patterns with wide intervals, J. Systems Sci. Math. Sci., 3 (1983), 295-303.   Google Scholar

[3]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inform. Theory, 51 (2005), 1139-1141.  doi: 10.1109/TIT.2004.842708.  Google Scholar

[4]

J. H. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inform. Theory, 56 (2010), 1685-1693.  doi: 10.1109/TIT.2010.2040888.  Google Scholar

[5]

C. S. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745.  doi: 10.1109/TIT.2008.926410.  Google Scholar

[6]

C. S. DingR. Fuji-HaraY. FujiwaraM. Jimbo and M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inform. Theory, 55 (2009), 3297-3304.  doi: 10.1109/TIT.2009.2021366.  Google Scholar

[7]

C. S. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610.  doi: 10.1109/TIT.2007.899545.  Google Scholar

[8]

R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420.  doi: 10.1109/TIT.2004.834783.  Google Scholar

[9]

L. Fukshansky and A. A. Shaar, A new family of one-coincidence sets of sequences with dispersed elements for frequency-hopping CDMA systems, Adv. Math. Commun., 12 (2018), 181-188.  doi: 10.3934/amc.2018012.  Google Scholar

[10]

G. N. GeY. Miao and Z. H. Yao, Optimal frequency hopping sequences: Auto- and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867-879.  doi: 10.1109/TIT.2008.2009856.  Google Scholar

[11]

G. N. GeR. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718.  doi: 10.1016/j.jcta.2006.03.019.  Google Scholar

[12]

L. GuanZ. LiJ. B. Si and R. Gao, Generation and characteristics analysis of cognitive-based high-performance wide-gap FH sequences, IEEE Trans. Veh. Technol., 64 (2015), 5056-5069.  doi: 10.1109/TVT.2014.2377299.  Google Scholar

[13]

L. GuanZ. LiJ. B. Si and Y. C. Huang, Generation and characterization of orthogonal FH sequences for the congnitive network, Sci. China Inf. Sci., 58 (2015), 1-11.   Google Scholar

[14]

W. M. He and G. Feng, Comparison of two algorithms to generate wide gap FH code sequence, J. PLA Univ. Sci. Technol. (Nat. Sci.), 5 (2004), 29-33.   Google Scholar

[15]

P. V. Kumar, Frequency-hopping code sequence designs having large linear span, IEEE Trans. Inform. Theory, 34 (1988), 146-151.  doi: 10.1109/18.2616.  Google Scholar

[16]

T. H. Lee, H. H. Jung and J. H. Chung, A new one-coincidence frquency-hopping sequene set of length $p^2-p$, Proc. ITW, (2018). Google Scholar

[17]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94.  doi: 10.1109/tit.1974.1055169.  Google Scholar

[18]

B. Li, One-coincidence sequences with specified distance between adjacent symbols for frequency-hopping multiple access, IEEE Trans. Commun., 45 (1997), 408-410.   Google Scholar

[19]

P. H. LiC. L. FanY. Yang and Y. Wang, New bounds on wide-gap frequency-hopping sequences, IEEE Commun. Letter, 23 (2019), 1050-1053.   Google Scholar

[20]

X. H. Niu and C. P. Xing, New extension construction of optimal frequency hopping sequence sets, IEEE Trans. Inform. Theory, 65 (2019), 5846-5855.  doi: 10.1109/TIT.2019.2916362.  Google Scholar

[21]

D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154.  doi: 10.1109/TIT.2004.833362.  Google Scholar

[22]

W. L. RenF. W. Fu and Z. C. Zhou, New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Crypt., 72 (2014), 423-434.  doi: 10.1007/s10623-012-9774-3.  Google Scholar

[23]

W. L. RenF. W. FuF. Wang and J. Gao, A class of optimal one-coincidence frequency-hopping sequence sets with composite length, IEICE Trans. Fund. Elec., Commun. Compu. Sci., E100-A (2017), 2528-2533.   Google Scholar

[24]

A. A. Shaar and P. A. Davies, A survey of one-coincidence sequences for frequency-hopped spread-spectrum systems, Proc. IEE-F, 131 (1984), 719-724.   Google Scholar

[25]

A. A. Shaar and P. A. Davies, Prime sequences: Quasi-optimal sequences for OR channel code division multiplexing, Electronics Letters, 19 (1983), 888-890.   Google Scholar

[26]

M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook, McGraw-Hill, Inc., New York, 2002. Google Scholar

[27]

P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inform. Theory, 44 (1998), 1492-1503.  doi: 10.1109/18.681324.  Google Scholar

[28]

H. WangY. ZhaoF. Shen and W. Sun, The design of wide interval FH sequences based on RS code, Appl. Sci. Technol., 37 (2010), 28-33.   Google Scholar

[29]

Y. YangX. H. TangU. Parampalli and D. Y. Peng, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inform. Theory, 57 (2011), 7605-7613.  doi: 10.1109/TIT.2011.2162571.  Google Scholar

[30]

H. Q. Zhang, Design and performance analysis of frequency hopping sequences with given minimum gap, Proc. ICMMT (2010). Google Scholar

show all references

References:
[1]

Z. F. CaoG. N. Ge and Y. Miao, Combinatorial characterizations of one-coincidence frequency-hopping sequences, Des. Codes Cryptogr., 41 (2006), 177-184.  doi: 10.1007/s10623-006-9007-8.  Google Scholar

[2]

W. D. Chen, Frequency hopping patterns with wide intervals, J. Systems Sci. Math. Sci., 3 (1983), 295-303.   Google Scholar

[3]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inform. Theory, 51 (2005), 1139-1141.  doi: 10.1109/TIT.2004.842708.  Google Scholar

[4]

J. H. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inform. Theory, 56 (2010), 1685-1693.  doi: 10.1109/TIT.2010.2040888.  Google Scholar

[5]

C. S. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745.  doi: 10.1109/TIT.2008.926410.  Google Scholar

[6]

C. S. DingR. Fuji-HaraY. FujiwaraM. Jimbo and M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inform. Theory, 55 (2009), 3297-3304.  doi: 10.1109/TIT.2009.2021366.  Google Scholar

[7]

C. S. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610.  doi: 10.1109/TIT.2007.899545.  Google Scholar

[8]

R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420.  doi: 10.1109/TIT.2004.834783.  Google Scholar

[9]

L. Fukshansky and A. A. Shaar, A new family of one-coincidence sets of sequences with dispersed elements for frequency-hopping CDMA systems, Adv. Math. Commun., 12 (2018), 181-188.  doi: 10.3934/amc.2018012.  Google Scholar

[10]

G. N. GeY. Miao and Z. H. Yao, Optimal frequency hopping sequences: Auto- and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867-879.  doi: 10.1109/TIT.2008.2009856.  Google Scholar

[11]

G. N. GeR. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718.  doi: 10.1016/j.jcta.2006.03.019.  Google Scholar

[12]

L. GuanZ. LiJ. B. Si and R. Gao, Generation and characteristics analysis of cognitive-based high-performance wide-gap FH sequences, IEEE Trans. Veh. Technol., 64 (2015), 5056-5069.  doi: 10.1109/TVT.2014.2377299.  Google Scholar

[13]

L. GuanZ. LiJ. B. Si and Y. C. Huang, Generation and characterization of orthogonal FH sequences for the congnitive network, Sci. China Inf. Sci., 58 (2015), 1-11.   Google Scholar

[14]

W. M. He and G. Feng, Comparison of two algorithms to generate wide gap FH code sequence, J. PLA Univ. Sci. Technol. (Nat. Sci.), 5 (2004), 29-33.   Google Scholar

[15]

P. V. Kumar, Frequency-hopping code sequence designs having large linear span, IEEE Trans. Inform. Theory, 34 (1988), 146-151.  doi: 10.1109/18.2616.  Google Scholar

[16]

T. H. Lee, H. H. Jung and J. H. Chung, A new one-coincidence frquency-hopping sequene set of length $p^2-p$, Proc. ITW, (2018). Google Scholar

[17]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94.  doi: 10.1109/tit.1974.1055169.  Google Scholar

[18]

B. Li, One-coincidence sequences with specified distance between adjacent symbols for frequency-hopping multiple access, IEEE Trans. Commun., 45 (1997), 408-410.   Google Scholar

[19]

P. H. LiC. L. FanY. Yang and Y. Wang, New bounds on wide-gap frequency-hopping sequences, IEEE Commun. Letter, 23 (2019), 1050-1053.   Google Scholar

[20]

X. H. Niu and C. P. Xing, New extension construction of optimal frequency hopping sequence sets, IEEE Trans. Inform. Theory, 65 (2019), 5846-5855.  doi: 10.1109/TIT.2019.2916362.  Google Scholar

[21]

D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154.  doi: 10.1109/TIT.2004.833362.  Google Scholar

[22]

W. L. RenF. W. Fu and Z. C. Zhou, New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Crypt., 72 (2014), 423-434.  doi: 10.1007/s10623-012-9774-3.  Google Scholar

[23]

W. L. RenF. W. FuF. Wang and J. Gao, A class of optimal one-coincidence frequency-hopping sequence sets with composite length, IEICE Trans. Fund. Elec., Commun. Compu. Sci., E100-A (2017), 2528-2533.   Google Scholar

[24]

A. A. Shaar and P. A. Davies, A survey of one-coincidence sequences for frequency-hopped spread-spectrum systems, Proc. IEE-F, 131 (1984), 719-724.   Google Scholar

[25]

A. A. Shaar and P. A. Davies, Prime sequences: Quasi-optimal sequences for OR channel code division multiplexing, Electronics Letters, 19 (1983), 888-890.   Google Scholar

[26]

M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook, McGraw-Hill, Inc., New York, 2002. Google Scholar

[27]

P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inform. Theory, 44 (1998), 1492-1503.  doi: 10.1109/18.681324.  Google Scholar

[28]

H. WangY. ZhaoF. Shen and W. Sun, The design of wide interval FH sequences based on RS code, Appl. Sci. Technol., 37 (2010), 28-33.   Google Scholar

[29]

Y. YangX. H. TangU. Parampalli and D. Y. Peng, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inform. Theory, 57 (2011), 7605-7613.  doi: 10.1109/TIT.2011.2162571.  Google Scholar

[30]

H. Q. Zhang, Design and performance analysis of frequency hopping sequences with given minimum gap, Proc. ICMMT (2010). Google Scholar

Table 1.  The optimal OC-FHS set $ \mathcal{B}^w $ with FHS distances $ d(B_k^w) $
$ \mathcal{B}^w $ Frequencies $ d(B_k^w) $
$ B_1^7 $ $ (21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 81, 71, 61, 51, 41, 31) $ 7
$ B_2^7 $ $ (42, 56, 70, 67, 64, 61, 58, 55, 52, 49, 63, 60, 57, 54, 51, 48, 45) $ 3
$ B_3^7 $ $ (46, 50, 54, 58, 62, 66, 53, 57, 61, 65, 69, 56, 43, 47, 51, 55, 59) $ 4
$ B_4^7 $ $ (50, 61, 72, 66, 60, 54, 65, 59, 53, 47, 58, 52, 46, 40, 51, 62, 56) $ 6
$ B_5^7 $ $ (54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 48, 49, 50, 51, 52, 53) $ 1
$ B_6^7 $ $ (41, 49, 57, 48, 56, 64, 55, 63, 71, 62, 70, 61, 52, 60, 51, 42, 50) $ 8
$ B_7^7 $ $ (45, 60, 58, 56, 54, 52, 67, 65, 63, 61, 59, 57, 55, 53, 51, 49, 47) $ 2
$ B_8^7 $ $ (66, 71, 76, 64, 69, 57, 62, 50, 55, 43, 48, 36, 41, 46, 51, 56, 61) $ 5
$ B_9^7 $ $ (36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 66, 61, 56, 51, 46, 41) $ 5
$ B_{10}^{7} $ $ (57, 59, 61, 63, 65, 67, 52, 54, 56, 58, 60, 45, 47, 49, 51, 53, 55) $ 2
$ B_{11}^7 $ $ (61, 70, 62, 71, 63, 55, 64, 56, 48, 57, 49, 41, 50, 42, 51, 60, 52) $ 8
$ B_{12}^7 $ $ (48, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49) $ 1
$ B_{13}^7 $ $ (52, 58, 47, 53, 59, 65, 54, 60, 66, 72, 61, 50, 56, 62, 51, 40, 46) $ 6
$ B_{14}^7 $ $ (56, 69, 65, 61, 57, 53, 66, 62, 58, 54, 50, 46, 59, 55, 51, 47, 43) $ 4
$ B_{15}^7 $ $ (60, 63, 49, 52, 55, 58, 61, 64, 67, 70, 56, 42, 45, 48, 51, 54, 57) $ 3
$ B_{16}^7 $ $ (81, 91, 84, 77, 70, 63, 56, 49, 42, 35, 28, 21, 31, 41, 51, 61, 71) $ 7
$ \mathcal{B}^w $ Frequencies $ d(B_k^w) $
$ B_1^7 $ $ (21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 81, 71, 61, 51, 41, 31) $ 7
$ B_2^7 $ $ (42, 56, 70, 67, 64, 61, 58, 55, 52, 49, 63, 60, 57, 54, 51, 48, 45) $ 3
$ B_3^7 $ $ (46, 50, 54, 58, 62, 66, 53, 57, 61, 65, 69, 56, 43, 47, 51, 55, 59) $ 4
$ B_4^7 $ $ (50, 61, 72, 66, 60, 54, 65, 59, 53, 47, 58, 52, 46, 40, 51, 62, 56) $ 6
$ B_5^7 $ $ (54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 48, 49, 50, 51, 52, 53) $ 1
$ B_6^7 $ $ (41, 49, 57, 48, 56, 64, 55, 63, 71, 62, 70, 61, 52, 60, 51, 42, 50) $ 8
$ B_7^7 $ $ (45, 60, 58, 56, 54, 52, 67, 65, 63, 61, 59, 57, 55, 53, 51, 49, 47) $ 2
$ B_8^7 $ $ (66, 71, 76, 64, 69, 57, 62, 50, 55, 43, 48, 36, 41, 46, 51, 56, 61) $ 5
$ B_9^7 $ $ (36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 66, 61, 56, 51, 46, 41) $ 5
$ B_{10}^{7} $ $ (57, 59, 61, 63, 65, 67, 52, 54, 56, 58, 60, 45, 47, 49, 51, 53, 55) $ 2
$ B_{11}^7 $ $ (61, 70, 62, 71, 63, 55, 64, 56, 48, 57, 49, 41, 50, 42, 51, 60, 52) $ 8
$ B_{12}^7 $ $ (48, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49) $ 1
$ B_{13}^7 $ $ (52, 58, 47, 53, 59, 65, 54, 60, 66, 72, 61, 50, 56, 62, 51, 40, 46) $ 6
$ B_{14}^7 $ $ (56, 69, 65, 61, 57, 53, 66, 62, 58, 54, 50, 46, 59, 55, 51, 47, 43) $ 4
$ B_{15}^7 $ $ (60, 63, 49, 52, 55, 58, 61, 64, 67, 70, 56, 42, 45, 48, 51, 54, 57) $ 3
$ B_{16}^7 $ $ (81, 91, 84, 77, 70, 63, 56, 49, 42, 35, 28, 21, 31, 41, 51, 61, 71) $ 7
Table 2.  The optimal WG-OC-FHS set $ \mathcal{C}^7 $ with the FHS gap $ D = 3 $
$ \mathcal{C}^7 $ Frequencies $ d(B_k^w) $
$ B_1^7 $ $ (21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 81, 71, 61, 51, 41, 31) $ 7
$ B_3^7 $ $ (46, 50, 54, 58, 62, 66, 53, 57, 61, 65, 69, 56, 43, 47, 51, 55, 59) $ 4
$ B_4^7 $ $ (50, 61, 72, 66, 60, 54, 65, 59, 53, 47, 58, 52, 46, 40, 51, 62, 56) $ 6
$ B_6^7 $ $ (41, 49, 57, 48, 56, 64, 55, 63, 71, 62, 70, 61, 52, 60, 51, 42, 50) $ 8
$ B_8^7 $ $ (66, 71, 76, 64, 69, 57, 62, 50, 55, 43, 48, 36, 41, 46, 51, 56, 61) $ 5
$ B_9^7 $ $ (36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 66, 61, 56, 51, 46, 41) $ 5
$ B_{11}^7 $ $ (61, 70, 62, 71, 63, 55, 64, 56, 48, 57, 49, 41, 50, 42, 51, 60, 52) $ 8
$ B_{13}^7 $ $ (52, 58, 47, 53, 59, 65, 54, 60, 66, 72, 61, 50, 56, 62, 51, 40, 46) $ 6
$ B_{14}^7 $ $ (56, 69, 65, 61, 57, 53, 66, 62, 58, 54, 50, 46, 59, 55, 51, 47, 43) $ 4
$ B_{16}^7 $ $ (81, 91, 84, 77, 70, 63, 56, 49, 42, 35, 28, 21, 31, 41, 51, 61, 71) $ 7
$ \mathcal{C}^7 $ Frequencies $ d(B_k^w) $
$ B_1^7 $ $ (21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 81, 71, 61, 51, 41, 31) $ 7
$ B_3^7 $ $ (46, 50, 54, 58, 62, 66, 53, 57, 61, 65, 69, 56, 43, 47, 51, 55, 59) $ 4
$ B_4^7 $ $ (50, 61, 72, 66, 60, 54, 65, 59, 53, 47, 58, 52, 46, 40, 51, 62, 56) $ 6
$ B_6^7 $ $ (41, 49, 57, 48, 56, 64, 55, 63, 71, 62, 70, 61, 52, 60, 51, 42, 50) $ 8
$ B_8^7 $ $ (66, 71, 76, 64, 69, 57, 62, 50, 55, 43, 48, 36, 41, 46, 51, 56, 61) $ 5
$ B_9^7 $ $ (36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 66, 61, 56, 51, 46, 41) $ 5
$ B_{11}^7 $ $ (61, 70, 62, 71, 63, 55, 64, 56, 48, 57, 49, 41, 50, 42, 51, 60, 52) $ 8
$ B_{13}^7 $ $ (52, 58, 47, 53, 59, 65, 54, 60, 66, 72, 61, 50, 56, 62, 51, 40, 46) $ 6
$ B_{14}^7 $ $ (56, 69, 65, 61, 57, 53, 66, 62, 58, 54, 50, 46, 59, 55, 51, 47, 43) $ 4
$ B_{16}^7 $ $ (81, 91, 84, 77, 70, 63, 56, 49, 42, 35, 28, 21, 31, 41, 51, 61, 71) $ 7
[1]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[2]

Lenny Fukshansky, Ahmad A. Shaar. A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181-188. doi: 10.3934/amc.2018012

[3]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[4]

Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009

[5]

Wenjuan Yin, Can Xiang, Fang-Wei Fu. Two constructions of low-hit-zone frequency-hopping sequence sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020110

[6]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[7]

Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequency-hopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373-391. doi: 10.3934/amc.2019024

[8]

Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024

[9]

Hongyu Han, Sheng Zhang. New classes of strictly optimal low hit zone frequency hopping sequence sets. Advances in Mathematics of Communications, 2020, 14 (4) : 579-589. doi: 10.3934/amc.2020031

[10]

Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029

[11]

Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91-101. doi: 10.3934/amc.2013.7.91

[12]

Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293-310. doi: 10.3934/amc.2013.7.293

[13]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[14]

Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671-691. doi: 10.3934/amc.2017049

[15]

Ferruh Özbudak, Eda Tekin. Correlation distribution of a sequence family generalizing some sequences of Trachtenberg. Advances in Mathematics of Communications, 2021, 15 (4) : 647-662. doi: 10.3934/amc.2020087

[16]

Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375

[17]

Shigeki Akiyama. Strong coincidence and overlap coincidence. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5223-5230. doi: 10.3934/dcds.2016027

[18]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[19]

Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with three-level cross-correlation. Advances in Mathematics of Communications, 2015, 9 (1) : 117-128. doi: 10.3934/amc.2015.9.117

[20]

Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021008

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (190)
  • HTML views (365)
  • Cited by (0)

Other articles
by authors

[Back to Top]