[1]
|
M. Baldi and F. Chiaraluce, Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes, in IEEE International Symposium on Information Theory (ISIT 2007), 2007, 2591–2595.
|
[2]
|
S. Barg, Some New NP-Complete Coding Problems, Problems Inform. Transmission, 30 (1994), 209-214.
|
[3]
|
A. Becker, A. Joux, A. May and A. Meurer, Decoding random binary linear codes in 2n/20: How 1 + 1 = 0 improves Information Set Decoding, in Advances in Cryptology—EUROCRYPT 2012, Lecture Notes in Comput. Sci., vol. 7237, Springer, Heidelberg, 2012,520–536.
doi: 10.1007/978-3-642-29011-4_31.
|
[4]
|
E. Berlekamp, R. McEliece and H. C. A. van Tilborg, On the inherent intractability of certain coding problems, IEEE Trans. Inform. Theory, 24 (1978), 384-386.
doi: 10.1109/tit.1978.1055873.
|
[5]
|
D. J. Bernstein, T. Lange and C. Peters, Smaller decoding exponents: Ball-collision decoding, in Advances in Cryptology (CRYPTO 2011), Lecture Notes in Comput. Sci., vol. 6841, Springer, Heidelberg, 2011,743–760.
doi: 10.1007/978-3-642-22792-9_42.
|
[6]
|
C. T. Gueye, J. B. Klamti and S. Hirose, Generalization of BJMM-ISD using May-Ozerov nearest neighbor algorithm over an arbitrary finite field $\mathbb{F}_q$, in Codes, Cryptology and Information Security, Lecture Notes in Comput. Sci., vol. 10194, Springer, Cham, 2017, 96–109.
doi: 10.1007/978-3-319-55589-8.
|
[7]
|
S. Hirose, May-Ozerov algorithm for nearest-neighbor problem over $\mathbb{F}_q$ and its application to information set decoding, in International Conference for Information Technology and Communications, 2016,115–126.
|
[8]
|
C. Interlando, K. Khathuria, N. Rohrer, J. Rosenthal and V. Weger, Generalization of the ball-collision algorithm, Journal of Algebra Combinatorics Discrete Structures and Applications, 7 (2020), 195-207.
doi: 10.13069/jacodesmath.729477.
|
[9]
|
F. Ivanov, G. Kabatiansky, E. Krouk and N. Rumenko, A new code-based cryptosystem, in International Workshop on Code-Based Cryptography (CBCrypto 2020), 2020, 41–49.
doi: 10.1007/978-3-030-54074-6_3.
|
[10]
|
F. Ivanov, G. Kabatiansky, E. Krouk and N. Rumenko, A new code-based cryptosystem, International Workshop on Code-Based Cryptography (CBCrypto 2020), 2020, https://drive.google.com/open?id=1NvEShYAu_6RkL2nmooydvP1yWxaPTiXt.
|
[11]
|
P. J. Lee and E. F. Brickell, An observation on the security of McEliece's public-key cryptosystem, in Advances in cryptology—EUROCRYPT '88 (Davos, 1988), Lecture Notes in Comput. Sci., vol. 330, Springer, Berlin, 1988,275–280.
doi: 10.1007/3-540-45961-8_25.
|
[12]
|
Y. Lee, J. Cho, Y. S. Kim and J. S. No, Cryptanalysis of the Ivanov-Kabatiansky-Krouk-Rumenko Cryptosystems, IEEE Communications Letters, 24 (2020), 2678-2681.
doi: 10.1109/LCOMM.2020.3019054.
|
[13]
|
J. S. Leon, A probabilistic algorithm for computing minimum weights of large error-correcting codes, IEEE Transactions on Information Theory, 34 (1988), 1354-1359.
doi: 10.1109/18.21270.
|
[14]
|
A. May and I. Ozerov, On computing nearest neighbors with applications to decoding of binary linear codes, in Advances in Cryptology—EUROCRYPT 2015, Part I, Lecture Notes in Comput. Sci., vol. 9056, Springer, Heidelberg, 2015,203–228.
doi: 10.1007/978-3-662-46800-5_9.
|
[15]
|
R. J. McEliece, A Public-Key Cryptosystem Based on Algebraic Coding Theory, DSN Progress Report, Jet Propulsion Laboratory, Pasadena, Technical report, 1978.
|
[16]
|
R. Niebuhr, E. Persichetti, P.-L. Cayrel, S. Bulygin and J. Buchmann, On lower bounds for information set decoding over $\mathbb{F}_q$ and on the effect of partial knowledge, Int. J. Inf. Coding Theory, 4 (2017), 47-78.
doi: 10.1504/IJICOT.2017.081458.
|
[17]
|
C. Peters, Information-set decoding for linear codes over , in Post-quantum Cryptography, Lecture Notes in Comput. Sci., vol. 6061, Springer, Berlin, 2010, 81–94.
doi: 10.1007/978-3-642-12929-2_7.
|
[18]
|
E. Prange, The use of information sets in decoding cyclic codes, IRE Transactions on Information Theory, 8 (1962), 5-9.
doi: 10.1109/tit.1962.1057777.
|
[19]
|
V. M. Sidelnikov and S. O. Shestakov, On an encoding system constructed on the basis of generalized Reed-Solomon codes, Diskret. Mat., 4 (1992), 57-63.
|
[20]
|
J. Stern, A method for finding codewords of small weight, in Coding Theory and Applications, Lecture Notes in Comput. Sci., vol. 388, Springer, New York, 1989,106–113.
doi: 10.1007/BFb0019850.
|