doi: 10.3934/amc.2020134

Character sums over a non-chain ring and their applications

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China

* Corresponding author: Xiwang Cao

Received  June 2020 Revised  November 2020 Published  March 2021

Fund Project: This work is supported by the National Natural Science Foundation of China under Grant 11771007

Some valuable results over rings have a promising utilization in coding theory and error-correcting code theory. In this paper, we study character sums over a certain non-chain ring and their applications in codebooks. There are two major ingredients in this study. The first ingredient is to investigate Gaussian sums, hyper Eisenstein sums, Jacobi sums over a certain non-chain ring and study the properties of these character sums. For their applications, the second ingredient is to present three classes of asymptotically optimal codebooks with respect to the Welch bound and a family of optimal codebooks with respect to the Levenshtein bound, which are constructed from character sums over a certain non-chain ring.

Citation: Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, doi: 10.3934/amc.2020134
References:
[1]

A. R. CalderbankP. J. CameronW. M. Kantor and J. J. Seidel, $\mathbb{Z}_4$-Kerdock codes, orthogonal spreads, and extremal Euclidean linesets, Proc. London Math. Soc., 75 (1997), 436-480.  doi: 10.1112/S0024611597000403.  Google Scholar

[2]

X. CaoW. Chou and X. Zhang, More constructions of near optimal codebooks associated with binary sequences, Adv. Math. Commun., 11 (2017), 187-202.  doi: 10.3934/amc.2017012.  Google Scholar

[3]

E. Candes and M. Wakin, An introduction to compressive sampling, IEEE Signal Process, 25 (2008), 21-30.   Google Scholar

[4]

C. Ding, Complex codebooks from combinatorial designs, IEEE Trans, Inform. Theory, 52 (2006), 4229-4235.  doi: 10.1109/TIT.2006.880058.  Google Scholar

[5]

C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inform. Theory, 55 (2009), 955-960.  doi: 10.1109/TIT.2008.2011511.  Google Scholar

[6]

C. Ding and T. Feng, A generic construction of complex codebooks meeting the Welch bound, IEEE Trans. Inform. Theory, 53 (2007), 4245-4250.  doi: 10.1109/TIT.2007.907343.  Google Scholar

[7]

C. Ding and T. Feng, Codebooks from almost difference sets, Des. Codes Crypt., 46 (2008), 113-126.  doi: 10.1007/s10623-007-9140-z.  Google Scholar

[8]

C. DingY. Gao and Z. Zhou, Five families of three-weight ternary cyclic codes and their duals, IEEE Trans. Inform. Theory, 59 (2013), 7940-7946.  doi: 10.1109/TIT.2013.2281205.  Google Scholar

[9]

C. Ding and J. Yin, Signal sets from functions with optimum nonlinearity, IEEE Trans. Commun., 55 (2007), 936-940.  doi: 10.1109/TCOMM.2007.894113.  Google Scholar

[10]

H. Hu and J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE Trans. Inform. Theory, 60 (2014), 1348-1355.  doi: 10.1109/TIT.2013.2292745.  Google Scholar

[11]

S. HongH. ParkT. Helleseth and Y. Kim, Near optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping, IEEE Trans. Inform. Theory, 60 (2014), 3698-3705.  doi: 10.1109/TIT.2014.2314298.  Google Scholar

[12]

Z. HengC. Ding and Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, IEEE Trans. Inform. Theory, 63 (2017), 6179-6187.  doi: 10.1109/TIT.2017.2693204.  Google Scholar

[13]

Z. Heng and Q. Yue, Optimal codebooks achieving the Levenshtein bound from generalized bent functions over $\mathbb{Z}_4$, Cryptogr. Commun., 9 (2017), 41-53.  doi: 10.1007/s12095-016-0194-5.  Google Scholar

[14]

Z. Heng, Nearly optimal codebooks based on generalized Jacobi sums, Discrete Appied Mathematics, 250 (2018), 227-240.  doi: 10.1016/j.dam.2018.05.017.  Google Scholar

[15]

J. Kovacevic and A. Chebira, An introduction to frames, Found. Trends Signal Process., 2 (2008), 1-94.   Google Scholar

[16]

G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks, Crypt. Commun., 11 (2019), 825-838.  doi: 10.1007/s12095-018-0331-4.  Google Scholar

[17]

G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks via the hyper Eisenstein sum, IEEE Trans. Inform. Theory, 64 (2018), 6498-6505.  doi: 10.1109/TIT.2017.2777492.  Google Scholar

[18]

G. Luo and X. Cao, New constructions of codebooks asymptotically achieving the Welch bound, 2018 IEEE International Symposium on Information Theory (ISIT)-Vail, (2018), 2346-2350. doi: 10.1109/ISIT.2018.8437838.  Google Scholar

[19]

Y. LiuM. Shi and P. Solé, Two-weight and three weight codes from trace codes over $\mathbb{F}_p+u\mathbb{F}_p+v\mathbb{F}_p+uv\mathbb{F}_p$, Discrete Mathematics, 341 (2018), 350-357.  doi: 10.1016/j.disc.2017.09.003.  Google Scholar

[20]

W. LuX. WuX. Cao and M. Chen, Six constructions of asymptotically optimal codebooks via the character sums, Des. Codes Cryptogr., 88 (2020), 1139-1158.  doi: 10.1007/s10623-020-00735-w.  Google Scholar

[21]

C. LiQ. Yue and Y. Huang, Two families of nearly optimal codebooks, Des. Codes Cryptogr., 75 (2015), 43-57.  doi: 10.1007/s10623-013-9891-7.  Google Scholar

[22] R. LidlH. Niederreiter and P. M. Cohn, Finite Fields, Cambridge University Press, 1997.   Google Scholar
[23]

J. LiS. Zhu and K. Feng, The Gauss sums and Jacobi sums over Galois ring $GR(p^2, r)$, Science China Mathematics, 56 (2013), 1457-1465.  doi: 10.1007/s11425-013-4629-6.  Google Scholar

[24]

S. Mesnager, Several new infinite families of bent functions and their duals, IEEE Trans. Inform. Theory, 60 (2014), 4397-4407.  doi: 10.1109/TIT.2014.2320974.  Google Scholar

[25]

S. Mesnager and A. Sinak, Several classes of minimal linear codes with few weights from weakly regular plateaued function, IEEE Trans. Inform. Theory, 66 (2020), 2296-2310.  doi: 10.1109/TIT.2019.2956130.  Google Scholar

[26]

J. Massey and T. Mittelholzer, Welch bound and sequence sets for code-division multiple-access systems, Sequences II, (1999), 63-78.  Google Scholar

[27]

J. Renes, R. Blume-Kohout, A. Scot and C. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys., 45 (2004), 2171-2180. doi: 10.1063/1.1737053.  Google Scholar

[28]

D. Sarwate, Meeting the Welch bound with equality, in Sequences and their Applications, New York, Springer-Verlag, 1999, 79-102. Google Scholar

[29]

T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14 (2003), 257-275.  doi: 10.1016/S1063-5203(03)00023-X.  Google Scholar

[30]

M. ShiR. WuL. QianL. Sok and P. Solé, New classes of $p$-Ary few weight codes, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 1393-1412.  doi: 10.1007/s40840-017-0553-1.  Google Scholar

[31]

M. ShiL. Qian and P. Solé, New few weight codes from trace codes over a local Ring, Applicable Algebra in Engineering, Communication and Computing, 29 (2018), 335-350.  doi: 10.1007/s00200-017-0345-8.  Google Scholar

[32]

P. TanZ. Zhou and D. Zhang, A construction of codebooks nearly achieving the Levenshtein bound, IEEE Signal Process. Lett., 23 (2016), 1306-1309.   Google Scholar

[33]

L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory, 20 (1974), 397-399.  doi: 10.1109/TIT.1974.1055219.  Google Scholar

[34]

W. K. Wootters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Phys., 191 (1989), 363-381.  doi: 10.1016/0003-4916(89)90322-9.  Google Scholar

[35]

C. XiangC. Ding and S. Mesnager, Optimal codebooks from binary codes meeting the Levenshtein bound, IEEE Trans. Inform. Theory, 61 (2015), 6526-6535.  doi: 10.1109/TIT.2015.2487451.  Google Scholar

[36]

N. Yu, A construction of codebooks associated with binary sequences, IEEE Trans. Inform. Theory, 58 (2012), 5522-5533.  doi: 10.1109/TIT.2012.2196021.  Google Scholar

[37]

Z. ZhouC. Ding and N. Li, New families of codebooks achieving the Levenstein bound, IEEE Trans. Inform. Theory, 60 (2014), 7382-7387.  doi: 10.1109/TIT.2014.2353052.  Google Scholar

[38]

A. Zhang and K. Feng, Two classes of codebooks nearly meeting the Welch bound, IEEE Trans. Inform. Theory, 58 (2012), 2507-2511.  doi: 10.1109/TIT.2011.2176531.  Google Scholar

[39]

A. Zhang and K. Feng, Construction of cyclotomic codebooks nearly meeting the Welch bound, Des. Codes Cryptogr., 63 (2013), 209-224.  doi: 10.1007/s10623-011-9549-2.  Google Scholar

[40]

Z. Zhou and X. Tang, New nearly optimal codebooks from relative difference sets, Adv. Math. Commun., 5 (2011), 521-527.  doi: 10.3934/amc.2011.5.521.  Google Scholar

show all references

References:
[1]

A. R. CalderbankP. J. CameronW. M. Kantor and J. J. Seidel, $\mathbb{Z}_4$-Kerdock codes, orthogonal spreads, and extremal Euclidean linesets, Proc. London Math. Soc., 75 (1997), 436-480.  doi: 10.1112/S0024611597000403.  Google Scholar

[2]

X. CaoW. Chou and X. Zhang, More constructions of near optimal codebooks associated with binary sequences, Adv. Math. Commun., 11 (2017), 187-202.  doi: 10.3934/amc.2017012.  Google Scholar

[3]

E. Candes and M. Wakin, An introduction to compressive sampling, IEEE Signal Process, 25 (2008), 21-30.   Google Scholar

[4]

C. Ding, Complex codebooks from combinatorial designs, IEEE Trans, Inform. Theory, 52 (2006), 4229-4235.  doi: 10.1109/TIT.2006.880058.  Google Scholar

[5]

C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inform. Theory, 55 (2009), 955-960.  doi: 10.1109/TIT.2008.2011511.  Google Scholar

[6]

C. Ding and T. Feng, A generic construction of complex codebooks meeting the Welch bound, IEEE Trans. Inform. Theory, 53 (2007), 4245-4250.  doi: 10.1109/TIT.2007.907343.  Google Scholar

[7]

C. Ding and T. Feng, Codebooks from almost difference sets, Des. Codes Crypt., 46 (2008), 113-126.  doi: 10.1007/s10623-007-9140-z.  Google Scholar

[8]

C. DingY. Gao and Z. Zhou, Five families of three-weight ternary cyclic codes and their duals, IEEE Trans. Inform. Theory, 59 (2013), 7940-7946.  doi: 10.1109/TIT.2013.2281205.  Google Scholar

[9]

C. Ding and J. Yin, Signal sets from functions with optimum nonlinearity, IEEE Trans. Commun., 55 (2007), 936-940.  doi: 10.1109/TCOMM.2007.894113.  Google Scholar

[10]

H. Hu and J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE Trans. Inform. Theory, 60 (2014), 1348-1355.  doi: 10.1109/TIT.2013.2292745.  Google Scholar

[11]

S. HongH. ParkT. Helleseth and Y. Kim, Near optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping, IEEE Trans. Inform. Theory, 60 (2014), 3698-3705.  doi: 10.1109/TIT.2014.2314298.  Google Scholar

[12]

Z. HengC. Ding and Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, IEEE Trans. Inform. Theory, 63 (2017), 6179-6187.  doi: 10.1109/TIT.2017.2693204.  Google Scholar

[13]

Z. Heng and Q. Yue, Optimal codebooks achieving the Levenshtein bound from generalized bent functions over $\mathbb{Z}_4$, Cryptogr. Commun., 9 (2017), 41-53.  doi: 10.1007/s12095-016-0194-5.  Google Scholar

[14]

Z. Heng, Nearly optimal codebooks based on generalized Jacobi sums, Discrete Appied Mathematics, 250 (2018), 227-240.  doi: 10.1016/j.dam.2018.05.017.  Google Scholar

[15]

J. Kovacevic and A. Chebira, An introduction to frames, Found. Trends Signal Process., 2 (2008), 1-94.   Google Scholar

[16]

G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks, Crypt. Commun., 11 (2019), 825-838.  doi: 10.1007/s12095-018-0331-4.  Google Scholar

[17]

G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks via the hyper Eisenstein sum, IEEE Trans. Inform. Theory, 64 (2018), 6498-6505.  doi: 10.1109/TIT.2017.2777492.  Google Scholar

[18]

G. Luo and X. Cao, New constructions of codebooks asymptotically achieving the Welch bound, 2018 IEEE International Symposium on Information Theory (ISIT)-Vail, (2018), 2346-2350. doi: 10.1109/ISIT.2018.8437838.  Google Scholar

[19]

Y. LiuM. Shi and P. Solé, Two-weight and three weight codes from trace codes over $\mathbb{F}_p+u\mathbb{F}_p+v\mathbb{F}_p+uv\mathbb{F}_p$, Discrete Mathematics, 341 (2018), 350-357.  doi: 10.1016/j.disc.2017.09.003.  Google Scholar

[20]

W. LuX. WuX. Cao and M. Chen, Six constructions of asymptotically optimal codebooks via the character sums, Des. Codes Cryptogr., 88 (2020), 1139-1158.  doi: 10.1007/s10623-020-00735-w.  Google Scholar

[21]

C. LiQ. Yue and Y. Huang, Two families of nearly optimal codebooks, Des. Codes Cryptogr., 75 (2015), 43-57.  doi: 10.1007/s10623-013-9891-7.  Google Scholar

[22] R. LidlH. Niederreiter and P. M. Cohn, Finite Fields, Cambridge University Press, 1997.   Google Scholar
[23]

J. LiS. Zhu and K. Feng, The Gauss sums and Jacobi sums over Galois ring $GR(p^2, r)$, Science China Mathematics, 56 (2013), 1457-1465.  doi: 10.1007/s11425-013-4629-6.  Google Scholar

[24]

S. Mesnager, Several new infinite families of bent functions and their duals, IEEE Trans. Inform. Theory, 60 (2014), 4397-4407.  doi: 10.1109/TIT.2014.2320974.  Google Scholar

[25]

S. Mesnager and A. Sinak, Several classes of minimal linear codes with few weights from weakly regular plateaued function, IEEE Trans. Inform. Theory, 66 (2020), 2296-2310.  doi: 10.1109/TIT.2019.2956130.  Google Scholar

[26]

J. Massey and T. Mittelholzer, Welch bound and sequence sets for code-division multiple-access systems, Sequences II, (1999), 63-78.  Google Scholar

[27]

J. Renes, R. Blume-Kohout, A. Scot and C. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys., 45 (2004), 2171-2180. doi: 10.1063/1.1737053.  Google Scholar

[28]

D. Sarwate, Meeting the Welch bound with equality, in Sequences and their Applications, New York, Springer-Verlag, 1999, 79-102. Google Scholar

[29]

T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14 (2003), 257-275.  doi: 10.1016/S1063-5203(03)00023-X.  Google Scholar

[30]

M. ShiR. WuL. QianL. Sok and P. Solé, New classes of $p$-Ary few weight codes, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 1393-1412.  doi: 10.1007/s40840-017-0553-1.  Google Scholar

[31]

M. ShiL. Qian and P. Solé, New few weight codes from trace codes over a local Ring, Applicable Algebra in Engineering, Communication and Computing, 29 (2018), 335-350.  doi: 10.1007/s00200-017-0345-8.  Google Scholar

[32]

P. TanZ. Zhou and D. Zhang, A construction of codebooks nearly achieving the Levenshtein bound, IEEE Signal Process. Lett., 23 (2016), 1306-1309.   Google Scholar

[33]

L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory, 20 (1974), 397-399.  doi: 10.1109/TIT.1974.1055219.  Google Scholar

[34]

W. K. Wootters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Phys., 191 (1989), 363-381.  doi: 10.1016/0003-4916(89)90322-9.  Google Scholar

[35]

C. XiangC. Ding and S. Mesnager, Optimal codebooks from binary codes meeting the Levenshtein bound, IEEE Trans. Inform. Theory, 61 (2015), 6526-6535.  doi: 10.1109/TIT.2015.2487451.  Google Scholar

[36]

N. Yu, A construction of codebooks associated with binary sequences, IEEE Trans. Inform. Theory, 58 (2012), 5522-5533.  doi: 10.1109/TIT.2012.2196021.  Google Scholar

[37]

Z. ZhouC. Ding and N. Li, New families of codebooks achieving the Levenstein bound, IEEE Trans. Inform. Theory, 60 (2014), 7382-7387.  doi: 10.1109/TIT.2014.2353052.  Google Scholar

[38]

A. Zhang and K. Feng, Two classes of codebooks nearly meeting the Welch bound, IEEE Trans. Inform. Theory, 58 (2012), 2507-2511.  doi: 10.1109/TIT.2011.2176531.  Google Scholar

[39]

A. Zhang and K. Feng, Construction of cyclotomic codebooks nearly meeting the Welch bound, Des. Codes Cryptogr., 63 (2013), 209-224.  doi: 10.1007/s10623-011-9549-2.  Google Scholar

[40]

Z. Zhou and X. Tang, New nearly optimal codebooks from relative difference sets, Adv. Math. Commun., 5 (2011), 521-527.  doi: 10.3934/amc.2011.5.521.  Google Scholar

Table 1.  Parameters of the $ (N_1, K_1) $ codebook of Theorem 5.1
$ q $ $ (N_1, K_1) $ $ I_{\max}(C_1(R^*, \widehat{R}^*\times \widehat{R})) $ $ I_W $ $ \frac{I_{\max}(C_1(R^*, \widehat{R}^*\times \widehat{R}))}{I_W} $
$ 13 $ $ (2028,144) $ 0.0902778 0.0803401 1.123695
$ 23 $ $ (11638,484) $ 0.0475207 0.0445012 1.067852
$ 5^2 $ $ (15000,576) $ 0.0434028 0.0408602 1.062227
$ 7^2 $ $ (115248,2304) $ 0.0212674 0.0206241 1.031192
$ 3^4 $ $ (524880,6400) $ 0.0126563 0.0124236 1.018730
$ 103 $ $ (1082118,10404) $ 0.00990004 0.00975668 1.014694
$ 151 $ $ (3420150,22500) $ 0.00666667 0.00664470 1.003311
$ 5^4 $ $ (243750000,389376) $ 0.00160513 0.00160128 1.002404
$ 7^5 $ $ (4.747279e+12,282441636) $ 0.0000595061 0.0000595008 1.000089
$ q $ $ (N_1, K_1) $ $ I_{\max}(C_1(R^*, \widehat{R}^*\times \widehat{R})) $ $ I_W $ $ \frac{I_{\max}(C_1(R^*, \widehat{R}^*\times \widehat{R}))}{I_W} $
$ 13 $ $ (2028,144) $ 0.0902778 0.0803401 1.123695
$ 23 $ $ (11638,484) $ 0.0475207 0.0445012 1.067852
$ 5^2 $ $ (15000,576) $ 0.0434028 0.0408602 1.062227
$ 7^2 $ $ (115248,2304) $ 0.0212674 0.0206241 1.031192
$ 3^4 $ $ (524880,6400) $ 0.0126563 0.0124236 1.018730
$ 103 $ $ (1082118,10404) $ 0.00990004 0.00975668 1.014694
$ 151 $ $ (3420150,22500) $ 0.00666667 0.00664470 1.003311
$ 5^4 $ $ (243750000,389376) $ 0.00160513 0.00160128 1.002404
$ 7^5 $ $ (4.747279e+12,282441636) $ 0.0000595061 0.0000595008 1.000089
Table 2.  Parameters of the $ (N_2, K_2) $ codebook of Theorem 5.2
$ q $ $ (N_2, K_2) $ $ I_{\max}(C_2(R^*, \widehat{R}^*\times \widehat{R})) $ $ I_W $ $ \frac{I_{\max}(C_2(R^*, \widehat{R}^*\times \widehat{R}))}{I_W} $
$ 17 $ $ (4352,256) $ 0.0664062 0.0606409 1.095074
$ 37 $ $ (47952,1296) $ 0.0285494 0.0274001 1.041944
$ 83 $ $ (558092,6724) $ 0.0123438 0.0121214 1.018347
$ 11^2 $ $ (1742400,14400) $ 0.00840278 0.00829883 1.012526
$ 3^5 $ $ (14231052,58564) $ 0.00414931 0.00412372 1.006205
$ 293 $ $ (24982352,85264) $ 0.00343639 0.00341881 1.005141
$ 7^3 $ $ (40118652,116964) $ 0.00293253 0.00291971 1.004389
$ 13^3 $ $ (1.05948e+10,4822416) $ 0.000455581 0.00045527 1.000683
$ 5^5 $ $ (3.0498e+10,9759376) $ 0.000320205 0.000320051 1.000480
$ q $ $ (N_2, K_2) $ $ I_{\max}(C_2(R^*, \widehat{R}^*\times \widehat{R})) $ $ I_W $ $ \frac{I_{\max}(C_2(R^*, \widehat{R}^*\times \widehat{R}))}{I_W} $
$ 17 $ $ (4352,256) $ 0.0664062 0.0606409 1.095074
$ 37 $ $ (47952,1296) $ 0.0285494 0.0274001 1.041944
$ 83 $ $ (558092,6724) $ 0.0123438 0.0121214 1.018347
$ 11^2 $ $ (1742400,14400) $ 0.00840278 0.00829883 1.012526
$ 3^5 $ $ (14231052,58564) $ 0.00414931 0.00412372 1.006205
$ 293 $ $ (24982352,85264) $ 0.00343639 0.00341881 1.005141
$ 7^3 $ $ (40118652,116964) $ 0.00293253 0.00291971 1.004389
$ 13^3 $ $ (1.05948e+10,4822416) $ 0.000455581 0.00045527 1.000683
$ 5^5 $ $ (3.0498e+10,9759376) $ 0.000320205 0.000320051 1.000480
Table 3.  Parameters of the $ (N_3, K_3) $ codebook of Theorem 5.3
$ q $ $ (N_3, K_3) $ $ I_{\max}({C}_3(D', \widehat{R}^*\times\widehat{R}^*)) $ $ I_W $ $ \frac{I_{\max}({C}_3(D', \widehat{R}^*\times\widehat{R}^*))}{I_W} $
$ 19 $ $ (5832,324) $ 0.0657439 0.0573525 1.146314
$ 59 $ $ (195112,3364) $ 0.0181594 0.0173972 1.043812
$ 3^4 $ $ (512000,6400) $ 0.0129787 0.0125809 1.031622
$ 113 $ $ (1404928,12544) $ 0.00917133 0.00896942 1.022511
$ 211 $ $ (9261000,44100) $ 0.00483048 0.00477339 1.011959
$ 281 $ $ (21952000,78400) $ 0.00360992 0.00357787 1.008959
$ 5^4 $ $ (242970624,389376) $ 0.00161029 0.00160385 1.004013
$ 11^3 $ $ (2.35264e+9,1768900) $ 0.000753578 0.000752163 1.001881
$ 17^3 $ $ (1.18515e+11,24127744) $ 0.000203707 0.000203604 1.000509
$ q $ $ (N_3, K_3) $ $ I_{\max}({C}_3(D', \widehat{R}^*\times\widehat{R}^*)) $ $ I_W $ $ \frac{I_{\max}({C}_3(D', \widehat{R}^*\times\widehat{R}^*))}{I_W} $
$ 19 $ $ (5832,324) $ 0.0657439 0.0573525 1.146314
$ 59 $ $ (195112,3364) $ 0.0181594 0.0173972 1.043812
$ 3^4 $ $ (512000,6400) $ 0.0129787 0.0125809 1.031622
$ 113 $ $ (1404928,12544) $ 0.00917133 0.00896942 1.022511
$ 211 $ $ (9261000,44100) $ 0.00483048 0.00477339 1.011959
$ 281 $ $ (21952000,78400) $ 0.00360992 0.00357787 1.008959
$ 5^4 $ $ (242970624,389376) $ 0.00161029 0.00160385 1.004013
$ 11^3 $ $ (2.35264e+9,1768900) $ 0.000753578 0.000752163 1.001881
$ 17^3 $ $ (1.18515e+11,24127744) $ 0.000203707 0.000203604 1.000509
[1]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[2]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[3]

Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068

[4]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[5]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[6]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[8]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[9]

Chloé Jimenez. A zero sum differential game with correlated informations on the initial position. A case with a continuum of initial positions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021009

[10]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021096

[11]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021101

[12]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[13]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[14]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[15]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[16]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021042

[17]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[18]

Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021062

[19]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[20]

Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2031-2049. doi: 10.3934/jimo.2020057

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (40)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]