Article Contents
Article Contents

# Character sums over a non-chain ring and their applications

• * Corresponding author: Xiwang Cao

This work is supported by the National Natural Science Foundation of China under Grant 11771007

• Some valuable results over rings have a promising utilization in coding theory and error-correcting code theory. In this paper, we study character sums over a certain non-chain ring and their applications in codebooks. There are two major ingredients in this study. The first ingredient is to investigate Gaussian sums, hyper Eisenstein sums, Jacobi sums over a certain non-chain ring and study the properties of these character sums. For their applications, the second ingredient is to present three classes of asymptotically optimal codebooks with respect to the Welch bound and a family of optimal codebooks with respect to the Levenshtein bound, which are constructed from character sums over a certain non-chain ring.

Mathematics Subject Classification: Primary: 11T24, 11L40, 11T71; Secondary: 11L05.

 Citation:

• Table 1.  Parameters of the $(N_1, K_1)$ codebook of Theorem 5.1

 $q$ $(N_1, K_1)$ $I_{\max}(C_1(R^*, \widehat{R}^*\times \widehat{R}))$ $I_W$ $\frac{I_{\max}(C_1(R^*, \widehat{R}^*\times \widehat{R}))}{I_W}$ $13$ $(2028,144)$ 0.0902778 0.0803401 1.123695 $23$ $(11638,484)$ 0.0475207 0.0445012 1.067852 $5^2$ $(15000,576)$ 0.0434028 0.0408602 1.062227 $7^2$ $(115248,2304)$ 0.0212674 0.0206241 1.031192 $3^4$ $(524880,6400)$ 0.0126563 0.0124236 1.018730 $103$ $(1082118,10404)$ 0.00990004 0.00975668 1.014694 $151$ $(3420150,22500)$ 0.00666667 0.00664470 1.003311 $5^4$ $(243750000,389376)$ 0.00160513 0.00160128 1.002404 $7^5$ $(4.747279e+12,282441636)$ 0.0000595061 0.0000595008 1.000089

Table 2.  Parameters of the $(N_2, K_2)$ codebook of Theorem 5.2

 $q$ $(N_2, K_2)$ $I_{\max}(C_2(R^*, \widehat{R}^*\times \widehat{R}))$ $I_W$ $\frac{I_{\max}(C_2(R^*, \widehat{R}^*\times \widehat{R}))}{I_W}$ $17$ $(4352,256)$ 0.0664062 0.0606409 1.095074 $37$ $(47952,1296)$ 0.0285494 0.0274001 1.041944 $83$ $(558092,6724)$ 0.0123438 0.0121214 1.018347 $11^2$ $(1742400,14400)$ 0.00840278 0.00829883 1.012526 $3^5$ $(14231052,58564)$ 0.00414931 0.00412372 1.006205 $293$ $(24982352,85264)$ 0.00343639 0.00341881 1.005141 $7^3$ $(40118652,116964)$ 0.00293253 0.00291971 1.004389 $13^3$ $(1.05948e+10,4822416)$ 0.000455581 0.00045527 1.000683 $5^5$ $(3.0498e+10,9759376)$ 0.000320205 0.000320051 1.000480

Table 3.  Parameters of the $(N_3, K_3)$ codebook of Theorem 5.3

 $q$ $(N_3, K_3)$ $I_{\max}({C}_3(D', \widehat{R}^*\times\widehat{R}^*))$ $I_W$ $\frac{I_{\max}({C}_3(D', \widehat{R}^*\times\widehat{R}^*))}{I_W}$ $19$ $(5832,324)$ 0.0657439 0.0573525 1.146314 $59$ $(195112,3364)$ 0.0181594 0.0173972 1.043812 $3^4$ $(512000,6400)$ 0.0129787 0.0125809 1.031622 $113$ $(1404928,12544)$ 0.00917133 0.00896942 1.022511 $211$ $(9261000,44100)$ 0.00483048 0.00477339 1.011959 $281$ $(21952000,78400)$ 0.00360992 0.00357787 1.008959 $5^4$ $(242970624,389376)$ 0.00161029 0.00160385 1.004013 $11^3$ $(2.35264e+9,1768900)$ 0.000753578 0.000752163 1.001881 $17^3$ $(1.18515e+11,24127744)$ 0.000203707 0.000203604 1.000509
•  [1] A. R. Calderbank, P. J. Cameron, W. M. Kantor and J. J. Seidel, $\mathbb{Z}_4$-Kerdock codes, orthogonal spreads, and extremal Euclidean linesets, Proc. London Math. Soc., 75 (1997), 436-480.  doi: 10.1112/S0024611597000403. [2] X. Cao, W. Chou and X. Zhang, More constructions of near optimal codebooks associated with binary sequences, Adv. Math. Commun., 11 (2017), 187-202.  doi: 10.3934/amc.2017012. [3] E. Candes and M. Wakin, An introduction to compressive sampling, IEEE Signal Process, 25 (2008), 21-30. [4] C. Ding, Complex codebooks from combinatorial designs, IEEE Trans, Inform. Theory, 52 (2006), 4229-4235.  doi: 10.1109/TIT.2006.880058. [5] C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inform. Theory, 55 (2009), 955-960.  doi: 10.1109/TIT.2008.2011511. [6] C. Ding and T. Feng, A generic construction of complex codebooks meeting the Welch bound, IEEE Trans. Inform. Theory, 53 (2007), 4245-4250.  doi: 10.1109/TIT.2007.907343. [7] C. Ding and T. Feng, Codebooks from almost difference sets, Des. Codes Crypt., 46 (2008), 113-126.  doi: 10.1007/s10623-007-9140-z. [8] C. Ding, Y. Gao and Z. Zhou, Five families of three-weight ternary cyclic codes and their duals, IEEE Trans. Inform. Theory, 59 (2013), 7940-7946.  doi: 10.1109/TIT.2013.2281205. [9] C. Ding and J. Yin, Signal sets from functions with optimum nonlinearity, IEEE Trans. Commun., 55 (2007), 936-940.  doi: 10.1109/TCOMM.2007.894113. [10] H. Hu and J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE Trans. Inform. Theory, 60 (2014), 1348-1355.  doi: 10.1109/TIT.2013.2292745. [11] S. Hong, H. Park, T. Helleseth and Y. Kim, Near optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping, IEEE Trans. Inform. Theory, 60 (2014), 3698-3705.  doi: 10.1109/TIT.2014.2314298. [12] Z. Heng, C. Ding and Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, IEEE Trans. Inform. Theory, 63 (2017), 6179-6187.  doi: 10.1109/TIT.2017.2693204. [13] Z. Heng and Q. Yue, Optimal codebooks achieving the Levenshtein bound from generalized bent functions over $\mathbb{Z}_4$, Cryptogr. Commun., 9 (2017), 41-53.  doi: 10.1007/s12095-016-0194-5. [14] Z. Heng, Nearly optimal codebooks based on generalized Jacobi sums, Discrete Appied Mathematics, 250 (2018), 227-240.  doi: 10.1016/j.dam.2018.05.017. [15] J. Kovacevic and A. Chebira, An introduction to frames, Found. Trends Signal Process., 2 (2008), 1-94. [16] G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks, Crypt. Commun., 11 (2019), 825-838.  doi: 10.1007/s12095-018-0331-4. [17] G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks via the hyper Eisenstein sum, IEEE Trans. Inform. Theory, 64 (2018), 6498-6505.  doi: 10.1109/TIT.2017.2777492. [18] G. Luo and X. Cao, New constructions of codebooks asymptotically achieving the Welch bound, 2018 IEEE International Symposium on Information Theory (ISIT)-Vail, (2018), 2346-2350. doi: 10.1109/ISIT.2018.8437838. [19] Y. Liu, M. Shi and P. Solé, Two-weight and three weight codes from trace codes over $\mathbb{F}_p+u\mathbb{F}_p+v\mathbb{F}_p+uv\mathbb{F}_p$, Discrete Mathematics, 341 (2018), 350-357.  doi: 10.1016/j.disc.2017.09.003. [20] W. Lu, X. Wu, X. Cao and M. Chen, Six constructions of asymptotically optimal codebooks via the character sums, Des. Codes Cryptogr., 88 (2020), 1139-1158.  doi: 10.1007/s10623-020-00735-w. [21] C. Li, Q. Yue and Y. Huang, Two families of nearly optimal codebooks, Des. Codes Cryptogr., 75 (2015), 43-57.  doi: 10.1007/s10623-013-9891-7. [22] R. Lidl,  H. Niederreiter and  P. M. Cohn,  Finite Fields, Cambridge University Press, 1997. [23] J. Li, S. Zhu and K. Feng, The Gauss sums and Jacobi sums over Galois ring $GR(p^2, r)$, Science China Mathematics, 56 (2013), 1457-1465.  doi: 10.1007/s11425-013-4629-6. [24] S. Mesnager, Several new infinite families of bent functions and their duals, IEEE Trans. Inform. Theory, 60 (2014), 4397-4407.  doi: 10.1109/TIT.2014.2320974. [25] S. Mesnager and A. Sinak, Several classes of minimal linear codes with few weights from weakly regular plateaued function, IEEE Trans. Inform. Theory, 66 (2020), 2296-2310.  doi: 10.1109/TIT.2019.2956130. [26] J. Massey and T. Mittelholzer, Welch bound and sequence sets for code-division multiple-access systems, Sequences II, (1999), 63-78. [27] J. Renes, R. Blume-Kohout, A. Scot and C. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys., 45 (2004), 2171-2180. doi: 10.1063/1.1737053. [28] D. Sarwate, Meeting the Welch bound with equality, in Sequences and their Applications, New York, Springer-Verlag, 1999, 79-102. [29] T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14 (2003), 257-275.  doi: 10.1016/S1063-5203(03)00023-X. [30] M. Shi, R. Wu, L. Qian, L. Sok and P. Solé, New classes of $p$-Ary few weight codes, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 1393-1412.  doi: 10.1007/s40840-017-0553-1. [31] M. Shi, L. Qian and P. Solé, New few weight codes from trace codes over a local Ring, Applicable Algebra in Engineering, Communication and Computing, 29 (2018), 335-350.  doi: 10.1007/s00200-017-0345-8. [32] P. Tan, Z. Zhou and D. Zhang, A construction of codebooks nearly achieving the Levenshtein bound, IEEE Signal Process. Lett., 23 (2016), 1306-1309. [33] L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory, 20 (1974), 397-399.  doi: 10.1109/TIT.1974.1055219. [34] W. K. Wootters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Phys., 191 (1989), 363-381.  doi: 10.1016/0003-4916(89)90322-9. [35] C. Xiang, C. Ding and S. Mesnager, Optimal codebooks from binary codes meeting the Levenshtein bound, IEEE Trans. Inform. Theory, 61 (2015), 6526-6535.  doi: 10.1109/TIT.2015.2487451. [36] N. Yu, A construction of codebooks associated with binary sequences, IEEE Trans. Inform. Theory, 58 (2012), 5522-5533.  doi: 10.1109/TIT.2012.2196021. [37] Z. Zhou, C. Ding and N. Li, New families of codebooks achieving the Levenstein bound, IEEE Trans. Inform. Theory, 60 (2014), 7382-7387.  doi: 10.1109/TIT.2014.2353052. [38] A. Zhang and K. Feng, Two classes of codebooks nearly meeting the Welch bound, IEEE Trans. Inform. Theory, 58 (2012), 2507-2511.  doi: 10.1109/TIT.2011.2176531. [39] A. Zhang and K. Feng, Construction of cyclotomic codebooks nearly meeting the Welch bound, Des. Codes Cryptogr., 63 (2013), 209-224.  doi: 10.1007/s10623-011-9549-2. [40] Z. Zhou and X. Tang, New nearly optimal codebooks from relative difference sets, Adv. Math. Commun., 5 (2011), 521-527.  doi: 10.3934/amc.2011.5.521.

Tables(3)

• on this site

/