In this paper, we are concerned about bounds and constructions of optimal $ 2 $-D $ (n\times m,3,2,1) $-optical orthogonal codes. The exact number of codewords of an optimal $ 2 $-D $ (n\times m,3,2,1) $-optical orthogonal code is determined for $ n = 2 $, $ m\equiv 1 \pmod{2} $, and $ n\equiv 1 \pmod{2} $, $ m\equiv 1,3,5 \pmod{12} $, and $ n\equiv 4 \pmod{6} $, $ m\equiv 8 \pmod{16} $.
Citation: |
[1] |
R. J. R. Abel and M. Buratti, Some progress on $(v, 4, 1)$ difference families and optical orthogonal codes, J. Combin. Theory (A), 106 (2004), 59-75.
doi: 10.1016/j.jcta.2004.01.003.![]() ![]() ![]() |
[2] |
T. L. Alderson and K. E. Mellinger, $2$-dimensional optical orthogonal codes from Singer groups, Discrete Appl. Math., 157 (2009), 3008-3019.
doi: 10.1016/j.dam.2009.06.002.![]() ![]() ![]() |
[3] |
T. L. Alderson and K. E. Mellinger, Spreads, arcs, and multiple wavelength codes, Discrete Math., 311 (2011), 1187-1196.
doi: 10.1016/j.disc.2010.06.010.![]() ![]() ![]() |
[4] |
S. Bitan and T. Etzion, Constructions for optimal constant weight cyclically permutable codes and difference families, IEEE Trans. Inform. Theory, 41 (1995), 77-87.
doi: 10.1109/18.370117.![]() ![]() ![]() |
[5] |
M. Buratti, Cyclic designs with block size $4$ and related optimal optical orthogonal codes, Des. Codes Cryptogr., 26 (2002), 111-125.
doi: 10.1023/A:1016505309092.![]() ![]() ![]() |
[6] |
M. Buratti, On silver and golden optical orthogonal codes, Art Discret. Appl. Math., 1 (2018), #P2.02.
doi: 10.26493/2590-9770.1236.ce4.![]() ![]() ![]() |
[7] |
M. Buratti, K. Momihara and A. Pasotti, New results on optimal $(v, 4, 2, 1)$ optical orthogonal codes, Des. Codes Cryptogr., 58 (2011), 89-109.
doi: 10.1007/s10623-010-9382-z.![]() ![]() ![]() |
[8] |
M. Buratti and A. Pasotti, Further progress on difference families with block size $4$ or $5$, Des. Codes Cryptogr., 56 (2010), 1-20.
doi: 10.1007/s10623-009-9335-6.![]() ![]() ![]() |
[9] |
M. Buratti, A. Pasotti and D. Wu, On optimal $(v, 5, 2, 1)$ optical orthogonal codes, Des. Codes Cryptogr., 68 (2013), 349-371.
doi: 10.1007/s10623-012-9654-x.![]() ![]() ![]() |
[10] |
H. Cao and R. Wei, Combinatorial constructions for optimal two-dimensional optical orthogonal codes, IEEE Trans. Inform. Theory, 55 (2009), 1387-1394.
doi: 10.1109/TIT.2008.2011431.![]() ![]() ![]() |
[11] |
Y. Chang, R. Fuji-Hara and Y. Miao, Combinatorial constructions of optimal optical orthogonal codes with weight $4$, IEEE Trans. Inform. Theory, 49 (2003), 1283-1292.
doi: 10.1109/TIT.2003.810628.![]() ![]() ![]() |
[12] |
Y. Chang and Y. Miao, Constructions for optimal optical orthogonal codes, Discrete Math., 261 (2003), 127-139.
doi: 10.1016/S0012-365X(02)00464-8.![]() ![]() ![]() |
[13] |
W. Chu and C. J. Colbourn, Recursive constructions for optimal $(n, 4, 2)$-OOCs, J. Combin. Designs, 12 (2004), 333-345.
doi: 10.1002/jcd.20003.![]() ![]() ![]() |
[14] |
F. R. K. Chung, J. A. Salehi and V. K. Wei, Optical orthogonal codes: design, analysis and applications, IEEE Trans. Inform. Theory, 35 (1989), 595-604.
doi: 10.1109/18.30982.![]() ![]() ![]() |
[15] |
H. Chung and P. V. Kumar, Optical orthogonal codes - new bounds and an optimal construction, IEEE Trans. Inform. Theory, 36 (1990), 866-873.
doi: 10.1109/18.53748.![]() ![]() ![]() |
[16] |
T. Feng and Y. Chang, Combinatorial constructions for optimal two-dimensional optical orthogonal codes with $\lambda=2$, IEEE Trans. Inform. Theory, 57 (2011), 6796-6819.
doi: 10.1109/TIT.2011.2165805.![]() ![]() ![]() |
[17] |
T. Feng, Y. Chang and L. Ji, Constructions for strictly cyclic $3$-designs and applications to optimal OOCs with $\lambda=2$, J. Combin. Theory (A), 115 (2008), 1527-1551.
doi: 10.1016/j.jcta.2008.03.003.![]() ![]() ![]() |
[18] |
T. Feng, L. Wang, X. Wang and Y. Zhao, Optimal two dimensional optical orthogonal codes with the best cross-correlation constrain, J. Combin. Designs, 25 (2017), 349-380.
doi: 10.1002/jcd.21554.![]() ![]() ![]() |
[19] |
T. Feng, L. Wang and X. Wang, Optimal $2$-D $(n\times m, 3, 2, 1)$-optical orthogonal codes and related equi-difference conflict avoiding codes, Des. Codes Cryptogr., 87 (2019), 1499-1520.
doi: 10.1007/s10623-018-0549-3.![]() ![]() ![]() |
[20] |
T. Feng, X. Wang and Y. Chang, Semi-cyclic holey group divisible designs with block size three, Des. Codes Cryptogr., 74 (2015), 301-324.
doi: 10.1007/s10623-013-9859-7.![]() ![]() ![]() |
[21] |
T. Feng, X. Wang and R. Wei, Semi-cyclic holey group divisible designs and applications to sampling designs and optical orthogonal codes, J. Combin. Designs, 24 (2016), 201-222.
doi: 10.1002/jcd.21417.![]() ![]() ![]() |
[22] |
H. L. Fu, Y. H. Lo and K. W. Shum, Optimal conflict-avoiding codes of odd length and weight $3$, Des. Codes Cryptogr., 72 (2014), 289-309.
doi: 10.1007/s10623-012-9764-5.![]() ![]() ![]() |
[23] |
R. Fuji-Hara and Y. Miao, Optical orthogonal codes: Their bounds and new optimal constructions, IEEE Trans. Inform. Theory, 46 (2000), 2396-2406.
doi: 10.1109/18.887852.![]() ![]() ![]() |
[24] |
G. Ge, Group divisible designs, in CRC Handbook of Combinatorial Designs (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2006.
doi: 10.1201/9781420049954.![]() ![]() ![]() |
[25] |
G. Ge and J. Yin, Constructions for optimal $(v, 4, 1)$ optical orthogonal codes, IEEE Trans. Inform. Theory, 47 (2001), 2998-3004.
doi: 10.1109/18.959278.![]() ![]() ![]() |
[26] |
Y. Huang and Y. Chang, Two classes of optimal two-dimensional OOCs, Des. Codes Cryptogr., 63 (2012), 357-363.
doi: 10.1007/s10623-011-9560-7.![]() ![]() ![]() |
[27] |
Y. Lin, M. Mishima, J. Satoh and M. Jimbo, Optimal equi-difference conflict-avoiding codes of odd length and weight three, Finite Fields Appl., 26 (2014), 49-68.
doi: 10.1016/j.ffa.2013.11.001.![]() ![]() ![]() |
[28] |
N. Miyamoto, H. Mizuno and S. Shinohara, Optical orthogonal codes obtained from conics on finite projective planes, Finite Fields Appl., 10 (2004), 405-411.
doi: 10.1016/j.ffa.2003.09.004.![]() ![]() ![]() |
[29] |
K. Momihara, Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three, Des. Codes Cryptogr., 45 (2007), 379-390.
doi: 10.1007/s10623-007-9139-5.![]() ![]() ![]() |
[30] |
K. Momihara and M. Buratti, Bounds and constructions of optimal $(n, 4, 2, 1)$ optical orthogonal codes, IEEE Trans. Inform. Theory, 55 (2009), 514-523.
doi: 10.1109/TIT.2008.2009852.![]() ![]() ![]() |
[31] |
R. Omrani, G. Garg, P. V. Kumar, P. Elia and P. Bhambhani, Large families of asymptotically optimal two-dimensional optical orthogonal codes, IEEE Trans. Inform. Theory, 58 (2012), 1163-1185.
doi: 10.1109/TIT.2011.2169299.![]() ![]() ![]() |
[32] |
R. S. Rees, Two new direct product type constructions for resolvable group divisible designs, J. Combin. Designs, 1 (1993), 15-26.
doi: 10.1002/jcd.3180010104.![]() ![]() ![]() |
[33] |
J. Wang, X. Shan and J. Yin, On constructions for optimal two-dimentional optical orthogonal codes, Des. Codes Cryptogr., 54 (2010), 43-60.
doi: 10.1007/s10623-009-9308-9.![]() ![]() ![]() |
[34] |
J. Wang and J. Yin, Two-dimensional optical orthogonal codes and semicyclic group divisible designs, IEEE Trans. Inform. Theory, 56 (2010), 2177-2187.
doi: 10.1109/TIT.2010.2043772.![]() ![]() ![]() |
[35] |
L. Wang and Y. Chang, Determination of sizes of optimal three-dimensional optical orthogonal codes of weight three with the AM-OPP restriction, J. Combin. Designs, 25 (2017), 310-334.
doi: 10.1002/jcd.21550.![]() ![]() ![]() |
[36] |
L. Wang and Y. Chang, Combinatorial constructions of optimal three-dimensional optical orthogonal codes, IEEE Trans. Inform. Theory, 61 (2015), 671-687.
doi: 10.1109/TIT.2014.2368133.![]() ![]() ![]() |
[37] |
L. Wang, T. Feng, R. Pan and X. Wang, The spectrum of semicyclic holey group divisible designs with block size three, J. Combin. Designs, 28 (2020), 49-74.
doi: 10.1002/jcd.21680.![]() ![]() ![]() |
[38] |
X. Wang and Y. Chang, Further results on $(v, 4, 1)$-perfect difference families, Discrete Math., 310 (2010), 1995-2006.
doi: 10.1016/j.disc.2010.03.017.![]() ![]() ![]() |
[39] |
X. Wang and Y. Chang, Further results on optimal $(v, 4, 2, 1)$-OOCs, Discrete Math., 312 (2012), 331-340.
doi: 10.1016/j.disc.2011.09.025.![]() ![]() ![]() |
[40] |
X. Wang, Y. Chang and T. Feng, Optimal $2$-D $(n\times m, 3, 2, 1)$-optical orthogonal codes, IEEE Trans. Inform. Theory, 59 (2013), 710-725.
doi: 10.1109/TIT.2012.2214025.![]() ![]() ![]() |
[41] |
S. L. Wu and H. L. Fu, Optimal tight equi-difference conflict-avoiding codes of length $n=2^k\pm1$ and weight $3$, J. Combin. Designs, 21 (2013), 223-231.
doi: 10.1002/jcd.21332.![]() ![]() ![]() |
[42] |
G. C. Yang and T. E. Fuja, Optical orthogonal codes with unequal auto- and cross-correlation constraints, IEEE Trans. Inform. Theory, 41 (1995), 96-106.
![]() |
[43] |
G. C. Yang and W. C. Kwong, Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks, IEEE Trans. Communications, 45 (1997), 1426-1434.
![]() |
[44] |
J. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Math., 185 (1998), 201-219.
doi: 10.1016/S0012-365X(97)00172-6.![]() ![]() ![]() |