Article Contents
Article Contents

# Ternary Primitive LCD BCH codes

This paper was supported by the National Natural Science Foundation of China (No.61772015), the Foundation of Science and Technology on Information Assurance Laboratory (No.KJ-17-010) and the Foundation of Jinling Institute of Technology (No.JIT-B-202016, No.JIT-FHXM-2020). Y. Wu was sponsored by NUPTSF (No. NY220137). (Corresponding author:Yansheng Wu.)

• Absolute coset leaders were first proposed by the authors which have advantages in constructing binary LCD BCH codes. As a continue work, in this paper we focus on ternary linear codes. Firstly, we find the largest, second largest, and third largest absolute coset leaders of ternary primitive BCH codes. Secondly, we present three classes of ternary primitive BCH codes and determine their weight distributions. Finally, we obtain some LCD BCH codes and calculate some weight distributions. However, the calculation of weight distributions of two of these codes is equivalent to that of Kloosterman sums.

Mathematics Subject Classification: Primary: 11T23, 94B05; Secondary: 11L05.

 Citation:

•  Weight Frequency 0 1 $\frac{2}3\cdot(3^m-3^{\frac m2})$ $\frac{3^m-1}{2}$ $\frac{2}3\cdot(3^m+3^{\frac m2})$ $\frac{3^m-1}{2}$
 Weight Frequency 0 1 $\frac{2}3 \cdot(3^m-3^{\frac{m}2})$ $\frac{3^m-1}2$ $\frac{2}3 \cdot(3^m+3^{\frac{m}2})$ $\frac{3^m-1}2$ $\frac{1}3(2\cdot3^m+3^\frac{m}2)-1$ $3^m-1$ $\frac{1}3(2\cdot3^m-3^\frac{m}2)-1$ $3^m-1$ $3^m-1$ 2
 Weight Frequency 0 1 $\frac12\cdot(3^m-1)$ 12 $\frac34\cdot(3^m-1)$ 8 $3^m-1$ 6
•  [1] C. Carlet and S. Guilley, Complementary dual codes for countermeasures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.  doi: 10.3934/amc.2016.10.131. [2] C. Carlet, S. Mesnager, C. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., 86 (2018), 2605-2618.  doi: 10.1007/s10623-018-0463-8. [3] C. Carlet, S. Mesnager, C. Tang, Y. Qi and R. Pellikaan, Linear codes over $\Bbb F_q$ which are equivalent to LCD codes, IEEE Trans. Inf. Theory, 64 (2018), 3010-3017.  doi: 10.1109/TIT.2018.2789347. [4] B. Chen and H. Liu, New constructions of MDS codes with complementary duals, IEEE Trans. Inf. Theory, 63 (2017), 2843-2847. [5] P. Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inf. Theory, 21 (1975), 575-576.  doi: 10.1109/tit.1975.1055435. [6] C. Ding, Parameters of several classes of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 5322-5330.  doi: 10.1109/TIT.2015.2470251. [7] C. Ding, C. Fan and Z. Zhou, The dimension and minimum distance of two classes of primitive BCH codes, Finite Fields Appl., 45 (2017), 237-263.  doi: 10.1016/j.ffa.2016.12.009. [8] X. Huang, Q. Yue, Y. Wu and X. Shi, Binary Primitive LCD BCH codes, Des. Codes Cryptogr., 88 (2020), 2453-2473.  doi: 10.1007/s10623-020-00795-y. [9] L. Jin, Construction of MDS codes with complementary duals, IEEE Trans. Inf. Theory, 63 (2017), 2843-2847. [10] C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 86 (2018), 2261-2278.  doi: 10.1007/s10623-017-0447-0. [11] C. Li, C. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inf. Theory, 63 (2017), 4344-4356.  doi: 10.1109/TIT.2017.2672961. [12] C. Li, P. Wu and F. Liu, On two classes of primitive BCH codes and some related codes, IEEE Trans. Inf. Theory, 65 (2019), 3830-3840.  doi: 10.1109/TIT.2018.2883615. [13] C. Li, Q. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.  doi: 10.1016/j.ffa.2014.01.009. [14] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley Publishing Inc., 1983. [15] F. Li, Q. Yue and Y. Wu, Designed distances and parameters of new LCD BCH codes over finite fields, Cryptogr. Commun., 12 (2020), 147-163.  doi: 10.1007/s12095-019-00385-3. [16] S. Li, C. Ding, M. Xiong and G. Ge, Narrow-sense BCH codes over GF$(q)$ with length $n = \frac{q^m-1}{q-1}$, IEEE Trans. Inf. Theory, 63 (2017), 7219-7236.  doi: 10.1109/TIT.2017.2743687. [17] S. Li, C. Li, C. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inf. Theory, 63 (2017), 5699-5717. [18] H. Liu, C. Ding and C. Li, Dimensions of three types of BCH codes over GF$(q)$, Discrete Math., 340 (2017), 1910-1927.  doi: 10.1016/j.disc.2017.04.001. [19] J. L. Massey, Reversible codes, Information and Control, 7 (1964), 369-380.  doi: 10.1016/S0019-9958(64)90438-3. [20] X. Shi, Q. Yue and S. Yang, New LCD MDS codes constructed from generalized Reed-Solomon codes, J. Algebra Appl., 18 (2018), 1950150. doi: 10.1142/S0219498819501500. [21] K. K. Tzeng and C. R. P. Hartmann, On the minimum distance of certain reversible cyclic codes, IEEE Trans. Inf. Theory, 16 (1970), 644-646.  doi: 10.1109/tit.1970.1054517. [22] Y. Wu and Q. Yue, Factorizations of binomial polynomials and enumerations of LCD and self-dual constacyclic codes, IEEE Trans. Inf. Theory, 65 (2019), 1740-1751. [23] H. Yan, H. Liu, C. Li and S. Yang, Parameters of LCD BCH codes with two lengths, Adv. Math. Commun., 12 (2018), 579-594.  doi: 10.3934/amc.2018034. [24] X. Yang and J. L. Massey, The necessary and sufficient condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393.  doi: 10.1016/0012-365X(94)90283-6. [25] Z. Zhou, X. Li, C. Tang and C. Ding, Binary LCD codes and self-orthogonal codes from a generic construction, IEEE Trans. Inf. Theory, 65 (2019), 16-27.  doi: 10.1109/TIT.2018.2823704.

Tables(3)