size | 4 | 5 | 6 |
number of arcs of points of $\mathrm{PG}(2, 4)$ | 1 | 1 | 1 |
number of arcs of lines of $\mathrm{PG}(5, 2)$ | 1 | 1 | 1 |
Let $ C $ be a $ (n,q^{2k},n-k+1)_{q^2} $ additive MDS code which is linear over $ {\mathbb F}_q $. We prove that if $ n \geq q+k $ and $ k+1 $ of the projections of $ C $ are linear over $ {\mathbb F}_{q^2} $ then $ C $ is linear over $ {\mathbb F}_{q^2} $. We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over $ {\mathbb F}_q $ for $ q \in \{4,8,9\} $. We also classify the longest additive MDS codes over $ {\mathbb F}_{16} $ which are linear over $ {\mathbb F}_4 $. In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for $ q \in \{ 2,3\} $.
Citation: |
Table 1. The classification of arcs of lines of $\mathrm{PG}(5, 2)$
size | 4 | 5 | 6 |
number of arcs of points of $\mathrm{PG}(2, 4)$ | 1 | 1 | 1 |
number of arcs of lines of $\mathrm{PG}(5, 2)$ | 1 | 1 | 1 |
Table 2. The classification of arcs of planes of PG(8, 2)
size | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
number of arcs of points of PG(2, 8) | 1 | 1 | 3 | 2 | 2 | 2 | 1 |
number of arcs of planes of PG(8, 2) | 1 | 2 | 4 | 2 | 2 | 2 | 1 |
Table 3. The classification of arcs of lines of PG(5, 3)
size | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
# of arcs of points of PG(2, 9) | 1 | 2 | 6 | 3 | 2 | 1 | 1 |
# of arcs of lines of PG(5, 3) | 1 | 4 | 13 | 4 | 3 | 1 | 1 |
Table 4. The classification of arcs of lines of PG(3, 3)
size | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
# of arcs of points of PG(1, 9) | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
# of arcs of lines of PG(3, 3) | 3 | 4 | 5 | 4 | 3 | 2 | 2 |
Table 5. The classification of arcs of lines of $\mathrm{PG}(5, 4)$
size | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
# of arcs of $\mathrm{PG}(2, 16)$ | 3 | 22 | 125 | 865 | 1534 | 1262 | 300 |
# of line-arcs of $\mathrm{PG}(5, 4)$ | 10 | 360 | 8294 | 15162 | 2869 | 1465 | 301 |
size | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
# of arcs of $\mathrm{PG}(2, 16)$ | 159 | 70 | 30 | 9 | 5 | 3 | 2 |
# of line-arcs of $\mathrm{PG}(5, 4)$ | 159 | 70 | 30 | 9 | 5 | 3 | 2 |
[1] |
T. L. Alderson, $(6, 3)$-MDS codes over an alphabet of size $4$, Des. Codes Cryptogr, 38 (2006), 31–40.
doi: 10.1007/s10623-004-5659-4.![]() ![]() ![]() |
[2] |
S. Ball, On sets of vectors of a finite vector space in which every subset of basis size is a basis, J. Eur. Math. Soc., 14 (2012), 733–748.
doi: 10.4171/JEMS/316.![]() ![]() ![]() |
[3] |
S. Ball and M. Lavrauw, Arcs in finite projective spaces, EMS Surv. Math. Sci., 6 (2019), 133–172.
doi: 10.4171/emss/33.![]() ![]() ![]() |
[4] |
A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert and A. Wassermann, Error-Correcting Linear Codes. Classification by Isometry and Applications, Algorithms and Computation in Mathematics 18, Springer, 2006.
![]() ![]() |
[5] |
A. Blokhuis and A. E. Brouwer, Small additive quaternary codes, European J. Combin., 25 (2004), 161–167.
doi: 10.1016/S0195-6698(03)00096-9.![]() ![]() ![]() |
[6] |
K. Bogart, D. Goldberg and J. Gordon, An elementary proof of the MacWilliams theorem on equivalence of codes, Inform and Control, 37 (1978), 19–22.
doi: 10.1016/S0019-9958(78)90389-3.![]() ![]() ![]() |
[7] |
K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Statistics, 23 (1952), 426–434.
doi: 10.1214/aoms/1177729387.![]() ![]() ![]() |
[8] |
P. Dembowski, Finite Geometries, Reprint of the 1968 original. Classics in Mathematics. Springer-Verlag, Berlin, 1997.
![]() ![]() |
[9] |
J. Bamberg, A. Betten, Ph. Cara, J. De Beule, M. Lavrauw and M. Neunhöffer, Finite Incidence Geometry, FinInG–a GAP Package, Version 1.4.1, 2018. https://www.gap-system.org/Packages/fining.html.
![]() |
[10] |
G. A. Gamboa Quintero, Additive MDS codes, Master's Thesis, Universitat Politècnica Catalunya, 2020.
![]() |
[11] |
The GAP Group, GAP – Groups, Algorithms, Programming -a System for Computational Discrete Algebra, Version 4.11.0, 2020. https://www.gap-system.org.
![]() |
[12] |
L. H. Soicher, GAP Package GRAPE, Version 4.8.5, 2021. https://gap-packages.github.io/grape.
![]() |
[13] |
M. Grassl and M. Rötteler, Quantum MDS codes over small fields, in Proc. Int. Symp. Inf. Theory (ISIT), (2015), 1104–1108, arXiv: 1502.05267.
doi: 10.1109/ISIT.2015.7282626.![]() ![]() |
[14] |
J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces: Update 2001, Finite Geometries, Dev. Math., Kluwer Acad. Publ, Dordrecht, 3 (2001), 201-246.
doi: 10.1007/978-1-4613-0283-4_13.![]() ![]() ![]() |
[15] |
F. Huber and M. Grassl, Quantum codes of maximal distance and highly entangled subspaces, Quantum, 4 (2020), 284, arXiv: 1907.07733.
doi: 10.22331/q-2020-06-18-284.![]() ![]() |
[16] |
A. Ketkar, A. Klappenecker, S. Kumar and P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inf. Theory, 52 (2006), 4892-4914.
doi: 10.1109/TIT.2006.883612.![]() ![]() ![]() |
[17] |
J. I. Kokkala, D. S. Krotov and P. R. J. Östergård, On the classification of MDS codes, IEEE Trans. Inf. Theory, 61 (2015), 6485–6492.
doi: 10.1109/TIT.2015.2488659.![]() ![]() ![]() |
[18] |
J. I. Kokkala and P. R. J. Östergård, Further results on the classification of MDS codes, Adv. Math. Commun., 10 (2016), 489–498.
doi: 10.3934/amc.2016020.![]() ![]() ![]() |
[19] |
M. Lavrauw and G. Van de Voorde, Field reduction and linear sets in finite geometry, in: Contemporary Mathematics, (eds: G Kyureghyan, GL Mullen, and A Pott), American Mathematical Society, 632 (2015), 271–293.
doi: 10.1090/conm/632/12633.![]() ![]() ![]() |
[20] |
S. Linton, Finding the smallest image of a set, in: ISSAC '04: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, 2004 (2004), 229–234.
doi: 10.1145/1005285.1005319.![]() ![]() ![]() |
[21] |
L. Lunelli and M. Sce, Considerazione aritmetiche e risultati sperimentali sui $\{K; n\}_q$-archi, Ist. Lombardo Accad. Sci. Rend. A, 98 (1964), 3-52.
![]() ![]() |
[22] |
F. J. MacWilliams, Combinatorial Problems of Elementary Abelian Groups, Thesis (Ph.D.)–Radcliffe College, 1962.
![]() ![]() |
[23] |
K. Shiromoto, Note on MDS codes over the integers modulo $p^{m}$,, Hokkaido Mathematical Journal, 29 (2000), 149–157.
doi: 10.14492/hokmj/1350912961.![]() ![]() ![]() |
[24] |
L. H. Soicher, Computation of partial spreads web-page, http://www.maths.qmul.ac.uk/~lsoicher/partialspreads/
![]() |
[25] |
H. N. Ward and J. A. Wood, Characters and the equivalence of codes, J. Combin. Theory Ser. A, 73 (1996), 348–352.
doi: 10.1016/S0097-3165(96)80011-2.![]() ![]() ![]() |