• Previous Article
    A New Construction of odd-variable Rotation symmetric Boolean functions with good cryptographic properties
  • AMC Home
  • This Issue
  • Next Article
    Generalized Hamming weights of toric codes over hypersimplices and squarefree affine evaluation codes
doi: 10.3934/amc.2021027
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Degenerate flag varieties in network coding

RWTH Aachen University, 52056 Aachen, Germany

* Corresponding author: Gabriele Nebe

Received  March 2021 Early access July 2021

Fund Project: This is a contribution to Project-ID 286237555 - TRR 195 - by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

Building upon the application of flags to network coding introduced in [6], we develop a variant of this coding technique that uses degenerate flags. The information set is a metric affine space isometric to the space of upper triangular matrices endowed with the flag rank metric. This suggests the development of a theory for flag rank metric codes in analogy to the rank metric codes used in linear subspace coding.

Citation: Ghislain Fourier, Gabriele Nebe. Degenerate flag varieties in network coding. Advances in Mathematics of Communications, doi: 10.3934/amc.2021027
References:
[1]

G. Cerulli IrelliX. FangE. FeiginG. Fourier and R. Reineke, Linear degenerations of flag varieties, Math. Z., 287 (2017), 615-654.  doi: 10.1007/s00209-016-1839-y.  Google Scholar

[2]

E. Feigin, $\mathbb{G}_a^M$ degeneration of flag varieties, Selecta Math. (N.S.), 18 (2012), 513-537.  doi: 10.1007/s00029-011-0084-9.  Google Scholar

[3]

E. FeiginG. Fourier and P. Littelmann, PBW filtration and bases for irreducible modules in type $ {\mathbb{A}} _n$, Transform. Groups, 16 (2011), 71-89.  doi: 10.1007/s00031-010-9115-4.  Google Scholar

[4]

G. C. Irelli and M. Lanini, Degenerate flag varieties of type $ {\mathbb{A}} $ and $ {\mathbb{C}} $ are schubert varieties, Int. Math. Research Notices, 2015 (2015), 6353-6374.  doi: 10.1093/imrn/rnu128.  Google Scholar

[5]

R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform., 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[6]

D. LiebholdG. Nebe and A. Vazquez-Castro, Network coding with flags, Des. Codes Cryptogr., 86 (2018), 269-284.  doi: 10.1007/s10623-017-0361-5.  Google Scholar

[7]

D. Liebhold, Flag Codes With Application to Network Coding, PhD Thesis, RWTH Aachen 2019. Google Scholar

[8]

A. Ravagnani, Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80 (2016), 197-216.  doi: 10.1007/s10623-015-0077-3.  Google Scholar

[9]

D. SilvaF. R. Kschischang and R. Kötter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967.  doi: 10.1109/TIT.2008.928291.  Google Scholar

show all references

References:
[1]

G. Cerulli IrelliX. FangE. FeiginG. Fourier and R. Reineke, Linear degenerations of flag varieties, Math. Z., 287 (2017), 615-654.  doi: 10.1007/s00209-016-1839-y.  Google Scholar

[2]

E. Feigin, $\mathbb{G}_a^M$ degeneration of flag varieties, Selecta Math. (N.S.), 18 (2012), 513-537.  doi: 10.1007/s00029-011-0084-9.  Google Scholar

[3]

E. FeiginG. Fourier and P. Littelmann, PBW filtration and bases for irreducible modules in type $ {\mathbb{A}} _n$, Transform. Groups, 16 (2011), 71-89.  doi: 10.1007/s00031-010-9115-4.  Google Scholar

[4]

G. C. Irelli and M. Lanini, Degenerate flag varieties of type $ {\mathbb{A}} $ and $ {\mathbb{C}} $ are schubert varieties, Int. Math. Research Notices, 2015 (2015), 6353-6374.  doi: 10.1093/imrn/rnu128.  Google Scholar

[5]

R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform., 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[6]

D. LiebholdG. Nebe and A. Vazquez-Castro, Network coding with flags, Des. Codes Cryptogr., 86 (2018), 269-284.  doi: 10.1007/s10623-017-0361-5.  Google Scholar

[7]

D. Liebhold, Flag Codes With Application to Network Coding, PhD Thesis, RWTH Aachen 2019. Google Scholar

[8]

A. Ravagnani, Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80 (2016), 197-216.  doi: 10.1007/s10623-015-0077-3.  Google Scholar

[9]

D. SilvaF. R. Kschischang and R. Kötter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967.  doi: 10.1109/TIT.2008.928291.  Google Scholar

[1]

John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019

[2]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[3]

Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015

[4]

Muhammad Ajmal, Xiande Zhang. New optimal error-correcting codes for crosstalk avoidance in on-chip data buses. Advances in Mathematics of Communications, 2021, 15 (3) : 487-506. doi: 10.3934/amc.2020078

[5]

Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923

[6]

Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028

[7]

Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042

[8]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[9]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

[10]

Victor Ayala, Adriano Da Silva, Luiz A. B. San Martin. Control systems on flag manifolds and their chain control sets. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2301-2313. doi: 10.3934/dcds.2017101

[11]

Carlos Munuera, Morgan Barbier. Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications, 2012, 6 (3) : 273-285. doi: 10.3934/amc.2012.6.273

[12]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[13]

Jinmei Fan, Yanhai Zhang. Optimal quinary negacyclic codes with minimum distance four. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021043

[14]

Hans-Joachim Kroll, Sayed-Ghahreman Taherian, Rita Vincenti. Optimal antiblocking systems of information sets for the binary codes related to triangular graphs. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020107

[15]

Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247

[16]

Marcelo Muniz S. Alves, Luciano Panek, Marcelo Firer. Error-block codes and poset metrics. Advances in Mathematics of Communications, 2008, 2 (1) : 95-111. doi: 10.3934/amc.2008.2.95

[17]

John B. Little. The ubiquity of order domains for the construction of error control codes. Advances in Mathematics of Communications, 2007, 1 (1) : 151-171. doi: 10.3934/amc.2007.1.151

[18]

Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175

[19]

Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417

[20]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (58)
  • HTML views (156)
  • Cited by (0)

Other articles
by authors

[Back to Top]