doi: 10.3934/amc.2021030
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Partitioned difference families: The storm has not yet passed

1. 

Dipartimento di Matematica e Informatica, Università di Perugia, via Vanvitelli 1, 06123 Italy

2. 

Mathematical Institute, University of Augsburg, 86135 Augsburg, Germany

* Corresponding author: Marco Buratti

Received  February 2021 Early access August 2021

Two years ago, we alarmed the scientific community about the large number of bad papers in the literature on zero difference balanced functions, where direct proofs of seemingly new results are presented in an unnecessarily lengthy and convoluted way. Indeed, these results had been proved long before and very easily in terms of difference families.

In spite of our report, papers of the same kind continue to proliferate. Regrettably, a further attempt to put the topic in order seems unavoidable. While some authors now follow our recommendation of using the terminology of partitioned difference families, their methods are still the same and their results are often trivial or even wrong. In this note, we show how a very recent paper of this type can be easily dealt with.

Citation: Marco Buratti, Dieter Jungnickel. Partitioned difference families: The storm has not yet passed. Advances in Mathematics of Communications, doi: 10.3934/amc.2021030
References:
[1]

R. J. R. Abel and M. Buratti, Difference families, in Handbook of Combinatorial Designs, Second Edition, Chapman & Hall/CRC, Boca Raton, FL, (2007), 392–410.  Google Scholar

[2] T. BethD. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.   Google Scholar
[3]

R. C. Bose and W. S. Connor, Combinatorial properties of group divisible incomplete block designs, Ann. Math. Stat., 23 (1952), 367-383.  doi: 10.1214/aoms/1177729382.  Google Scholar

[4]

M. Buratti, On disjoint (v, k, k-1) difference families, Des. Codes Cryptogr., 87 (2019), 745-755.  doi: 10.1007/s10623-018-0511-4.  Google Scholar

[5]

M. Buratti and D. Jungnickel, Partitioned difference families versus zero difference balanced functions, Des. Codes Cryptogr., 87 (2019), 2461-2467.  doi: 10.1007/s10623-019-00632-x.  Google Scholar

[6]

M. Buratti, J. Yan and C. Wang, From a $1$-rotational RBIBD to a partitioned difference family, Electronic J. Combin., 17 (2010), Research Paper 139, 23pp.  Google Scholar

[7]

C. Ding and J. Yin, Combinatorial constructions of optimal constant composition codes, IEEE Trans. Inform. Theory, 51 (2005), 3671-3674.  doi: 10.1109/TIT.2005.855612.  Google Scholar

[8]

S. Furino, Difference families from rings, Discret. Math., 97 (1991), 177-190.  doi: 10.1016/0012-365X(91)90433-3.  Google Scholar

[9]

D. Jungnickel, Composition theorems for difference families and regular planes, Discrete Math., 23 (1978), 151-158.  doi: 10.1016/0012-365X(78)90113-9.  Google Scholar

[10]

D. Jungnickel, On difference matrices and regular Latin squares, Abh. Math. Sem. Univ. Hamburg, 50 (1980), 219-231.  doi: 10.1007/BF02941430.  Google Scholar

[11]

D. Jungnickel, On automorphism groups of divisible designs, Canadian J. Math., 34 (1982), 257-297.  doi: 10.4153/CJM-1982-018-x.  Google Scholar

[12]

D. Jungnickel, A. Pott and K. W. Smith, Difference sets, in Handbook of Combinatorial Designs, Second Edition, Chapman & Hall/CRC, Boca Raton, FL, (2006), 419–435.  Google Scholar

[13]

S. LiH. Wei and G. Ge, Generic constructions for partitioned difference families with applications: A unified combinatorial approach, Des. Codes Cryptogr., 82 (2017), 583-599.  doi: 10.1007/s10623-016-0182-y.  Google Scholar

[14]

S. Xu, L. Qu and X. Cao, Three classes of partitioned difference families and their optimal constant composition codes, Adv. Math. Commun., (2020). doi: 10.3934/amc.2020120.  Google Scholar

[15]

X. ZengH. CaiX. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248.  doi: 10.1109/TIT.2013.2237754.  Google Scholar

show all references

References:
[1]

R. J. R. Abel and M. Buratti, Difference families, in Handbook of Combinatorial Designs, Second Edition, Chapman & Hall/CRC, Boca Raton, FL, (2007), 392–410.  Google Scholar

[2] T. BethD. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.   Google Scholar
[3]

R. C. Bose and W. S. Connor, Combinatorial properties of group divisible incomplete block designs, Ann. Math. Stat., 23 (1952), 367-383.  doi: 10.1214/aoms/1177729382.  Google Scholar

[4]

M. Buratti, On disjoint (v, k, k-1) difference families, Des. Codes Cryptogr., 87 (2019), 745-755.  doi: 10.1007/s10623-018-0511-4.  Google Scholar

[5]

M. Buratti and D. Jungnickel, Partitioned difference families versus zero difference balanced functions, Des. Codes Cryptogr., 87 (2019), 2461-2467.  doi: 10.1007/s10623-019-00632-x.  Google Scholar

[6]

M. Buratti, J. Yan and C. Wang, From a $1$-rotational RBIBD to a partitioned difference family, Electronic J. Combin., 17 (2010), Research Paper 139, 23pp.  Google Scholar

[7]

C. Ding and J. Yin, Combinatorial constructions of optimal constant composition codes, IEEE Trans. Inform. Theory, 51 (2005), 3671-3674.  doi: 10.1109/TIT.2005.855612.  Google Scholar

[8]

S. Furino, Difference families from rings, Discret. Math., 97 (1991), 177-190.  doi: 10.1016/0012-365X(91)90433-3.  Google Scholar

[9]

D. Jungnickel, Composition theorems for difference families and regular planes, Discrete Math., 23 (1978), 151-158.  doi: 10.1016/0012-365X(78)90113-9.  Google Scholar

[10]

D. Jungnickel, On difference matrices and regular Latin squares, Abh. Math. Sem. Univ. Hamburg, 50 (1980), 219-231.  doi: 10.1007/BF02941430.  Google Scholar

[11]

D. Jungnickel, On automorphism groups of divisible designs, Canadian J. Math., 34 (1982), 257-297.  doi: 10.4153/CJM-1982-018-x.  Google Scholar

[12]

D. Jungnickel, A. Pott and K. W. Smith, Difference sets, in Handbook of Combinatorial Designs, Second Edition, Chapman & Hall/CRC, Boca Raton, FL, (2006), 419–435.  Google Scholar

[13]

S. LiH. Wei and G. Ge, Generic constructions for partitioned difference families with applications: A unified combinatorial approach, Des. Codes Cryptogr., 82 (2017), 583-599.  doi: 10.1007/s10623-016-0182-y.  Google Scholar

[14]

S. Xu, L. Qu and X. Cao, Three classes of partitioned difference families and their optimal constant composition codes, Adv. Math. Commun., (2020). doi: 10.3934/amc.2020120.  Google Scholar

[15]

X. ZengH. CaiX. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248.  doi: 10.1109/TIT.2013.2237754.  Google Scholar

[1]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278

[2]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[3]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[4]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[5]

Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575

[6]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

[7]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[8]

Mehdi Pourbarat. On the arithmetic difference of middle Cantor sets. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4259-4278. doi: 10.3934/dcds.2018186

[9]

Eugenia N. Petropoulou. On some difference equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2587-2594. doi: 10.3934/dcdsb.2017098

[10]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[11]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

[12]

Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070

[13]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[14]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[15]

Luis Barreira, Claudia Valls. Stable manifolds with optimal regularity for difference equations. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1537-1555. doi: 10.3934/dcds.2012.32.1537

[16]

Bi Ping, Maoan Han. Oscillation of second order difference equations with advanced argument. Conference Publications, 2003, 2003 (Special) : 108-112. doi: 10.3934/proc.2003.2003.108

[17]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2037-2053. doi: 10.3934/dcdsb.2020365

[18]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[19]

Qi Wang, Yue Zhou. Sets of zero-difference balanced functions and their applications. Advances in Mathematics of Communications, 2014, 8 (1) : 83-101. doi: 10.3934/amc.2014.8.83

[20]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (102)
  • HTML views (144)
  • Cited by (0)

Other articles
by authors

[Back to Top]