[1]
|
P. Almeida, D. Napp and R. Pinto, MDS 2D convolutional codes with optimal 1D horizontal projections, Des. Codes Cryptogr., 86 (2018), 285-302.
doi: 10.1007/s10623-017-0357-1.
|
[2]
|
P. J. Almeida, D. Napp and R. Pinto, Superregular matrices and applications to convolutional codes, Linear Algebra Appl., 499 (2016), 1-25.
doi: 10.1016/j.laa.2016.02.034.
|
[3]
|
P. J. Almeida and J. Lieb, Complete j-MDP convolutional codes, IEEE Trans. Inform. Theory, 66 (2020), 7348-7359.
doi: 10.1109/TIT.2020.3015698.
|
[4]
|
J. Climent, D. Napp, C. Perea and R. Pinto, A construction of MDS 2D convolutional codes of rate 1/n based on superregular matrices, Linear Algebra Appl., 437 (2012), 766-780.
doi: 10.1016/j.laa.2012.02.032.
|
[5]
|
J. Climent, D. Napp, C. Perea and R. Pinto, Maximum distance seperable 2D convolutional codes, IEEE Trans. Inform. Theory, 62 (2016), 669-680.
doi: 10.1109/TIT.2015.2509075.
|
[6]
|
J. Climent, D. Napp, R. Pinto and R. Simoes, Decoding of 2D convolutional codes over an erasure channel, Adv. Math. Commun., 10 (2016), 179-193.
doi: 10.3934/amc.2016.10.179.
|
[7]
|
E. Fornasini and R. Pinto, Matrix fraction descriptions in convolutional coding, Linear Algebra Appl., 392 (2004), 119-158.
doi: 10.1016/j.laa.2004.06.007.
|
[8]
|
E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes, IEEE Trans. Inform. Theory, 40 (1994), 1068-1082.
doi: 10.1109/18.335967.
|
[9]
|
H. Gluesing-Luerssen, J. Rosenthal and R. Smarandache, Strongly-MDS convolutional codes, IEEE Trans. Inform. Theory, 52 (2006), 584-598.
doi: 10.1109/TIT.2005.862100.
|
[10]
|
R. Hutchinson, J. Rosenthal and R. Smarandache, Convolutional codes with maximum distance profile, Systems Control Lett., 54 (2005), 53-63.
doi: 10.1016/j.sysconle.2004.06.005.
|
[11]
|
P. Jangisarakul and C. Charoenlarpnopparut, Decoding of $2$-d convolutional codes based on algebraic approach, International Journal of Pure and Applied Mathematics, 97 (2014), 21-30.
doi: 10.12732/ijpam.v97i1.3.
|
[12]
|
J. Lieb, Complete MDP convolutional codes, J. Algebra Appl., 18 (2019), 1950105.
doi: 10.1142/S0219498819501056.
|
[13]
|
J. Lieb, R. Pinto and J. Rosenthal, Convolutional codes, in Concise Encyclopedia of Coding Theory (eds. C. Huffman, J. Kim, P. Sole), CRC Press, 2021.
|
[14]
|
R. Lobo, D. L. Blitzer and M. A. Vouk, Locally invertible multidimensional convolutional encoders, IEEE Trans. Inform. Theory, 58 (2012), 1774-1782.
doi: 10.1109/TIT.2011.2178129.
|
[15]
|
D. Napp, C. Perea and R. Pinto, Input-state-output representations and constructions of finite-support 2d convolutional codes, Adv. Math. Commun., 4 (2010), 533-545.
doi: 10.3934/amc.2010.4.533.
|
[16]
|
V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969) 354–356.
doi: 10.1007/BF02165411.
|
[17]
|
V. Tomas, J. Rosenthal and R. Smarandache, Decoding of convolutional codes Over the erasure channel, IEEE Trans. Inform. Theory, 58 (2012), 90-108.
doi: 10.1109/TIT.2011.2171530.
|
[18]
|
P. A. Weiner, Multidimensional Convolutional Codes, Thesis (Ph.D.) University of Notre Dame. 1998.
|
[19]
|
E. V. York, Algebraic Description and Construction of Error Correcting Codes: A Linear Systems Point of View, Thesis (Ph.D.) University of Notre Dame. 1997.
|