\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New type i binary [72, 36, 12] self-dual codes from composite matrices and R1 lifts

  • * Corresponding author: Adrian Korban

    * Corresponding author: Adrian Korban 
Abstract Full Text(HTML) Figure(0) / Table(9) Related Papers Cited by
  • In this work, we define three composite matrices derived from group rings. We employ these composite matrices to create generator matrices of the form $ [I_n \ | \ \Omega(v)], $ where $ I_n $ is the identity matrix and $ \Omega(v) $ is a composite matrix and search for binary self-dual codes with parameters $ [36,18, 6 \ \text{or} \ 8]. $ We next lift these codes over the ring $ R_1 = \mathbb{F}_2+u\mathbb{F}_2 $ to obtain codes whose binary images are self-dual codes with parameters $ [72,36,12]. $ Many of these codes turn out to have weight enumerators with parameters that were not known in the literature before. In particular, we find $ 30 $ new Type I binary self-dual codes with parameters $ [72,36,12]. $

    Mathematics Subject Classification: Primary: 94B05; Secondary: 16S34.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Type I $ [36,18,6-8] $ Codes from Theorem 4.1

    Type $ r_B $ $ r_C $ $ |Aut(C_i)| $
    $ C_1 $ $ [36,18,6] $ $ (0,0,0,0,0,1,0,1,1) $ $ (1,0,1,1,1,0,1,0,1) $ $ 2^2 \cdot 3^2 $
    $ C_2 $ $ [36,18,6] $ $ (0,0,0,0,1,1,0,1,1) $ $ (1,0,0,1,0,1,1,1,0) $ $ 2^2 \cdot 3^2 $
    $ C_3 $ $ [36,18,8] $ $ (0,0,1,0,0,1,0,0,1) $ $ (1,0,0,1,1,0,1,1,1) $ $ 2^2 \cdot 3^2 $
    $ C_4 $ $ [36,18,8] $ $ (0,1,0,0,0,1,0,1,1) $ $ (1,0,0,1,0,0,1,1,1) $ $ 2^2 \cdot 3^2 $
     | Show Table
    DownLoad: CSV

    Table 2.  New Type I $ [72,36,12] $ Codes from $ R_1 $-lift of $ C_1 $

    Type $ r_B $ $ r_C $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{C}_i)| $
    $ \mathcal{C}_1 $ $ W_{72,1} $ $ (u,0,u,u,u,1,u,u + 1,1) $ $ (1,0,1,1,u + 1,0,1,u,1) $ $ 0 $ $ 192 $ $ 36 $
    $ \mathcal{C}_2 $ $ W_{72,1} $ $ (u,0,0,u,0,1,u,1,1) $ $ (1,0,u + 1,1,u + 1,0,1,u,u + 1) $ $ 0 $ $ 198 $ $ 36 $
    $ \mathcal{C}_3 $ $ W_{72,1} $ $ (u,u,0,u,u,1,u,1,u + 1) $ $ (1,u,u + 1,1,u + 1,0,1,0,u + 1) $ $ 0 $ $ 336 $ $ 36 $
    $ \mathcal{C}_4 $ $ W_{72,1} $ $ (0,u,0,0,0,1,0,1,u + 1) $ $ (1,u,u + 1,1,u + 1,0,1,0,u + 1) $ $ 18 $ $ 234 $ $ 36 $
    $ \mathcal{C}_5 $ $ W_{72,1} $ $ (u,u,0,u,0,1,u,u + 1,1) $ $ (1,u,u + 1,1,1,u,1,0,u + 1) $ $ 18 $ $ 345 $ $ 36 $
    $ \mathcal{C}_6 $ $ W_{72,1} $ $ (0,u,0,0,0,1,0,u + 1,1) $ $ (1,u,1,1,u + 1,u,1,u,1) $ $ 18 $ $ 378 $ $ 36 $
    $ \mathcal{C}_7 $ $ W_{72,1} $ $ (u,u,u,u,0,1,u,u + 1,u + 1) $ $ (1,u,1,1,u + 1,0,1,0,1) $ $ 18 $ $ 396 $ $ 36 $
    $ \mathcal{C}_8 $ $ W_{72,1} $ $ (0,0,u,0,u,1,0,1,u + 1) $ $ (1,u,1,1,1,0,1,u,1) $ $ 18 $ $ 441 $ $ 36 $
    $ \mathcal{C}_9 $ $ W_{72,1} $ $ (u,u,0,u,0,1,u,1,u + 1) $ $ (1,u,1,1,1,0,1,u,1) $ $ 18 $ $ 453 $ $ 36 $
     | Show Table
    DownLoad: CSV

    Table 3.  New Type I $ [72,36,12] $ Codes from $ R_1 $-lift of $ C_2 $

    Type $ r_B $ $ r_C $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{C}_i)| $
    $ \mathcal{C}_{10} $ $ W_{72,1} $ $ (0,u,0,0,1,1,0,1,u + 1) $ $ (1,u,u,1,u,u + 1,1,1,0) $ $ 0 $ $ 219 $ $ 36 $
    $ \mathcal{C}_{11} $ $ W_{72,1} $ $ (u,0,u,u,1,1,u,u + 1,u + 1) $ $ (1,u,0,1,0,1,1,u + 1,u) $ $ 0 $ $ 345 $ $ 36 $
    $ \mathcal{C}_{12} $ $ W_{72,1} $ $ (0,0,u,0,1,1,0,1,u + 1) $ $ (1,u,0,1,0,1,1,1,0) $ $ 0 $ $ 408 $ $ 36 $
    $ \mathcal{C}_{13} $ $ W_{72,1} $ $ (u,0,0,u,1,u + 1,u,u + 1,u + 1) $ $ (1,0,u,1,0,u + 1,1,u + 1,0) $ $ 18 $ $ 261 $ $ 36 $
    $ \mathcal{C}_{14} $ $ W_{72,1} $ $ (u,u,u,u,1,1,u,1,u + 1) $ $ (1,0,0,1,u,1,1,u + 1,0) $ $ 18 $ $ 270 $ $ 36 $
    $ \mathcal{C}_{15} $ $ W_{72,1} $ $ (u,0,u,u,1,u + 1,u,1,u + 1) $ $ (1,0,u,1,u,1,1,u + 1,0) $ $ 18 $ $ 357 $ $ 36 $
     | Show Table
    DownLoad: CSV

    Table 4.  New Type I $ [72,36,12] $ Codes from $ R_1 $-lift of $ C_3 $

    Type $ r_B $ $ r_C $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{C}_i)| $
    $ \mathcal{C}_{16} $ $ W_{72,1} $ $ (u,u,1,u,0,1,u,0,1) $ $ (1,u,0,1,u + 1,u,1,1,u + 1) $ $ 0 $ $ 120 $ $ 36 $
    $ \mathcal{C}_{17} $ $ W_{72,1} $ $ (u,u,1,u,0,1,u,u,1) $ $ (1,0,u,1,1,0,1,1,u + 1) $ $ 0 $ $ 282 $ $ 36 $
    $ \mathcal{C}_{18} $ $ W_{72,1} $ $ (u,u,1,u,0,u + 1,u,0,1) $ $ (1,u,0,1,u + 1,u,1,1,u + 1) $ $ 0 $ $ 300 $ $ 36 $
    $ \mathcal{C}_{19} $ $ W_{72,1} $ $ (u,u,1,u,0,u + 1,u,0,1) $ $ (1,u,u,1,1,0,1,1,1) $ $ 18 $ $ 336 $ $ 36 $
    $ \mathcal{C}_{20} $ $ W_{72,1} $ $ (u,0,1,u,0,1,u,u,1) $ $ (1,0,0,1,1,0,1,u + 1,u + 1) $ $ 36 $ $ 435 $ $ 36 $
     | Show Table
    DownLoad: CSV

    Table 5.  New Type I $ [72,36,12] $ Codes from $ R_1 $-lift of $ C_4 $

    Type $ r_B $ $ r_C $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{C}_i)| $
    $ \mathcal{C}_{21} $ $ W_{72,1} $ $ (0,1,u,0,u,1,0,u + 1,u + 1) $ $ (1,u,u,1,u,u,1,u + 1,u + 1) $ $ 0 $ $ 366 $ $ 36 $
    $ \mathcal{C}_{22} $ $ W_{72,1} $ $ (u,1,u,u,u,1,u,1,u + 1) $ $ (1,u,0,1,0,0,1,u + 1,1) $ $ 0 $ $ 372 $ $ 36 $
    $ \mathcal{C}_{23} $ $ W_{72,1} $ $ (0,1,u,0,u,1,0,u + 1,u + 1) $ $ (1,0,0,1,0,0,1,u + 1,u + 1) $ $ 0 $ $ 384 $ $ 36 $
    $ \mathcal{C}_{24} $ $ W_{72,1} $ $ (u,1,u,u,u,1,u,1,u + 1) $ $ (1,u,u,1,u,0,1,u + 1,1) $ $ 0 $ $ 390 $ $ 36 $
    $ \mathcal{C}_{25} $ $ W_{72,1} $ $ (u,1,0,u,0,1,u,u + 1,1) $ $ (1,u,0,1,0,0,1,1,u + 1) $ $ 0 $ $ 399 $ $ 36 $
    $ \mathcal{C}_{26} $ $ W_{72,1} $ $ (u,1,u,u,u,1,u,u + 1,1) $ $ (1,0,u,1,0,0,1,u + 1,u + 1) $ $ 18 $ $ 264 $ $ 36 $
    $ \mathcal{C}_{27} $ $ W_{72,1} $ $ (u,1,0,u,u,u + 1,u,u + 1,1) $ $ (1,0,u,1,0,u,1,1,u + 1) $ $ 18 $ $ 285 $ $ 36 $
    $ \mathcal{C}_{28} $ $ W_{72,1} $ $ (0,1,u,0,0,u + 1,0,1,1) $ $ (1,u,u,1,u,0,1,1,1) $ $ 18 $ $ 300 $ $ 36 $
     | Show Table
    DownLoad: CSV

    Table 6.  Type I $ [36,18,6-8] $ Codes from Theorem 4.2

    Type $ r_B $ $ r_C $ $ r_D $ $ |Aut(C_i)| $
    $ C_5 $ $ [36,18,6] $ $ (0,0,0,0,0,1) $ $ (1,1,1,0,0,1) $ $ (1,1,1,0,1,0) $ $ 2^5 \cdot 3^4 \cdot 5 $
    $ C_6 $ $ [36,18,6] $ $ (0,0,0,0,1,1) $ $ (0,0,0,0,1,1) $ $ (1,1,1,1,0,1) $ $ 2^5 \cdot 3^4 \cdot 5 $
    $ C_7 $ $ [36,18,6] $ $ (0,0,0,0,1,1) $ $ (0,1,1,0,1,1) $ $ (0,1,1,1,0,0) $ $ 2^5 \cdot 3^2 $
    $ C_8 $ $ [36,18,6] $ $ (0,0,1,0,0,1) $ $ (0,0,1,1,1,0) $ $ (1,1,1,0,0,1) $ $ 2^5 \cdot 3^2 $
     | Show Table
    DownLoad: CSV

    Table 7.  New Type I $ [72,36,12] $ Codes from $ R_1 $-lift of $ C_7 $

    Type $ r_B $ $ r_C $ $ r_D $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{C}_i)| $
    $ \mathcal{C}_{29} $ $ W_{72,1} $ $ (0,0,0,u,1,1) $ $ (u,1,u + 1,u,1,1) $ $ (u,u + 1,1,u + 1,0,0) $ $ 0 $ $ 471 $ $ 144 $
     | Show Table
    DownLoad: CSV

    Table 8.  Type I $ [36,18,6-8] $ Codes from Theorem 4.3

    Type $ r_B $ $ r_C $ $ r_D $ $ |Aut(C_i)| $
    $ C_9 $ $ [36,18,6] $ $ (0,0,0,0,0,1) $ $ (0,1,1,0,1,1) $ $ (1,0,1,1,0,1) $ $ 2^5 \cdot 3^2 $
    $ C_{10} $ $ [36,18,6] $ $ (0,0,0,0,0,1) $ $ (1,1,1,0,0,1) $ $ (1,1,1,0,1,0) $ $ 2^5 \cdot 3^4 \cdot 5 $
    $ C_{11} $ $ [36,18,6] $ $ (0,0,0,0,1,1) $ $ (0,0,0,0,1,1) $ $ (1,1,1,1,0,1) $ $ 2^5 \cdot 3^4 \cdot 5 $
    $ C_{12} $ $ [36,18,6] $ $ (0,0,0,0,1,1) $ $ (0,1,1,0,0,1) $ $ (1,1,0,1,0,1) $ $ 2^5 \cdot 3^2 $
     | Show Table
    DownLoad: CSV

    Table 9.  New Type I $ [72,36,12] $ Codes from $ R_1 $-lift of $ C_9 $

    Type $ r_B $ $ r_C $ $ r_D $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{C}_i)| $
    $ \mathcal{C}_{30} $ $ W_{72,1} $ $ (0,u,u,u,u,1) $ $ (u,1,1,u,u + 1,1) $ $ (u + 1,u,u + 1,1,u,u + 1) $ $ 0 $ $ 621 $ $ 432 $
     | Show Table
    DownLoad: CSV
  • [1] M. Borello, On automorphism groups of binary linear codes, Topics in Finite Fields, 632 (2015), 29-41.  doi: 10.1090/conm/632/12617.
    [2] W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.
    [3] I. Bouyukliev, V. Fack and J. Winna, Hadamard matrices of order 36, European Conference on Combinatorics, Graph Theory and Applications, (2005), 93–98.
    [4] R. Dontcheva, New binary self-dual $[70, 35, 12]$ and binary $[72, 36, 12]$ self-dual doubly-even codes, Serdica Math. J., 27 (2002), 287-302. 
    [5] S. T. DoughertyP. GaboritM. Harada and P. Sole, Type II codes over $\mathbb{F}_2+u\mathbb{F}_2$", IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.
    [6] S. T. DoughertyJ. Gildea and A. Korban, Extending an established isomorphism between group rings and a subring of the $n \times n$ matrices, Internat. J. Algebra Comput., 31 (2021), 471-490.  doi: 10.1142/S0218196721500223.
    [7] S. T. DoughertyJ. GildeaA. Korban and A. Kaya, Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Commun., 14 (2020), 677-702.  doi: 10.3934/amc.2020037.
    [8] S. T. DoughertyJ. GildeaA. Korban and A. Kaya, New extremal self-dual binary codes of length 68 via composite construction, $\mathbb{F}_2+u\mathbb{F}_2$ lifts, extensions and neighbours, Int. J. Inf. Coding Theory, 5 (2020), 211-226. 
    [9] S. T. DoughertyJ. GildeaA. Kaya and A. Korban, Composite matrices from group rings, composite $G$-codes and constructions of self-dual codes, Des. Codes Cryptogr., 89 (2021), 1615-1638.  doi: 10.1007/s10623-021-00882-8.
    [10] S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, G-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.
    [11] S. T. DoughertyT. A. Gulliver and M. Harada, Extremal binary self dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.  doi: 10.1109/18.641574.
    [12] S. T. DoughertyS. Karadeniz and B. Yildiz, Codes over $R_k$, Gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.
    [13] S. T. DoughertyJ-L. Kim and P. Sole, Double circulant codes from two class association schemes, Adv. Math. Commun., 1 (2007), 45-64.  doi: 10.3934/amc.2007.1.45.
    [14] S. T. DoughertyJ. L. Kim and P. Sole, Open problems in coding theory, Contemp. Math., 634 (2015), 79-99.  doi: 10.1090/conm/634/12692.
    [15] T. A. Gulliver and M. Harada, On double circulant doubly-even self-dual $[72, 36, 12]$ codes and their neighbors, Austalas. J. Comb., 40 (2008), 137-144. 
    [16] M. Gurel and N. Yankov, Self-dual codes with an automorphism of order 17, Math. Commun., 21 (2016), 97-107. 
    [17] T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 31 (2006), 319-335. 
    [18] A. KayaB. Yildiz and I. Siap, New extremal binary self-dual codes of length 68 from quadratic residue codes over $\mathbb{F}_2+u\mathbb{F}_2+u^2\mathbb{F}_2$, Finite Fields Appl., 29 (2014), 160-177.  doi: 10.1016/j.ffa.2014.04.009.
    [19] A. Korban, All known type I and type II $[72, 36, 12]$ binary self-dual codes, available online at https://sites.google.com/view/adriankorban/binary-self-dual-codes.
    [20] A. Korban, S. Sahinkaya, D. Ustun, A novel genetic search scheme based on nature – inspired evolutionary algorithms for self-dual codes, arXiv: 2012.12248.
    [21] E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.
    [22] N. Tufekci and B. Yildiz, On codes over $R_{k, m}$ and constructions for new binary self-dual codes, Math. Slovaca, 66 (2016), 1511-1526.  doi: 10.1515/ms-2016-0240.
    [23] N. YankovM. H. LeeM. Gurel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.
    [24] A. Zhdanov, New self-dual codes of length 72, arXiv: 1705.05779.
    [25] A. Zhdanov, Convolutional encoding of 60, 64, 68, 72-bit self-dual codes, arXiv: 1702.05153.
  • 加载中

Tables(9)

SHARE

Article Metrics

HTML views(859) PDF downloads(506) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return