doi: 10.3934/amc.2021039
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

New self-dual codes from $ 2 \times 2 $ block circulant matrices, group rings and neighbours of neighbours

1. 

Department of Mathematics, Faculty of Science and Engineering, University of Chester, England

2. 

Harmony Public Schools, Houston, TX, USA

3. 

Department of Algebra, Uzhgorod National University, Uzhgorod, Ukraine

Received  March 2021 Revised  June 2021 Early access September 2021

In this paper, we construct new self-dual codes from a construction that involves a unique combination; $ 2 \times 2 $ block circulant matrices, group rings and a reverse circulant matrix. There are certain conditions, specified in this paper, where this new construction yields self-dual codes. The theory is supported by the construction of self-dual codes over the rings $ \mathbb{F}_2 $, $ \mathbb{F}_2+u \mathbb{F}_2 $ and $ \mathbb{F}_4+u \mathbb{F}_4 $. Using extensions and neighbours of codes, we construct $ 32 $ new self-dual codes of length $ 68 $. We construct 48 new best known singly-even self-dual codes of length 96.

Citation: Joe Gildea, Abidin Kaya, Adam Michael Roberts, Rhian Taylor, Alexander Tylyshchak. New self-dual codes from $ 2 \times 2 $ block circulant matrices, group rings and neighbours of neighbours. Advances in Mathematics of Communications, doi: 10.3934/amc.2021039
References:
[1]

D. AnevM. Harada and N. Yankov, New extremal singly even self-dual codes of lengths 64 and 66, J. Algebra Comb. Discrete Struct. Appl., 5 (2018), 143-151.  doi: 10.13069/jacodesmath.458601.  Google Scholar

[2]

E. R. BerlekampF. J. MacWilliams and N. J. A. Sloane, Gleason's theorem on self-dual codes, IEEE Trans. Inform. Theory, IT-18 (1972), 409-414.  doi: 10.1109/tit.1972.1054817.  Google Scholar

[3]

F. BernhardtP. Landrock and O. Manz, The extended golay codes considered as ideals, J. Combin. Theory Ser. A, 55 (1990), 235-246.  doi: 10.1016/0097-3165(90)90069-9.  Google Scholar

[4]

W. BosmaJ. Cannon and C. Playoust, The magma algebra system. I. the user language,, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[5]

C. L. ChenW. W Peterson and E. J. Weldon. Jr, Some results on quasi-cyclic codes, Information and Control, 15 (1969), 407-423.  doi: 10.1016/S0019-9958(69)90497-5.  Google Scholar

[6]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.  Google Scholar

[7]

P. J. Davis, Circulant Matrices, A Wiley-Interscience Publication; Pure and Applied Mathematics, John Wiley & Sons, New York-Chichester-Brisbane, 1979.  Google Scholar

[8]

S. T. DoughertyP. GaboritM. Harada and P. Solé, Type ii codes over ${\mathbf f}_2+u{\mathbf f}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.  Google Scholar

[9]

S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylyshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.  Google Scholar

[10]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylyshchak, Group rings, $g$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.  Google Scholar

[11]

S. T. DoughertyT. A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.  doi: 10.1109/18.641574.  Google Scholar

[12]

S. T. DoughertyB. Yildiz and S. Karadeniz, Codes over $r_k$, gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.  Google Scholar

[13]

S. DoughertyB. Yildiz and S. Karadeniz, Self-dual codes over $r_k$ and binary self-dual codes, Eur. J. Pure Appl. Math., 6 (2013), 89-106.   Google Scholar

[14]

P. Gaborit, Quadratic double circulant codes over fields, J. Combin. Theory Ser. A, 97 (2002), 85-107.  doi: 10.1006/jcta.2001.3198.  Google Scholar

[15]

S. D. Georgiou and E. Lappas, Self-dual codes from circulant matrices, Des. Codes Cryptogr., 64 (2012), 129-141.  doi: 10.1007/s10623-011-9510-4.  Google Scholar

[16]

J. Gildea, H. Hamilton, A. Kaya and B. Yildiz, Modified quadratic residue constructions and new extremal binary self-dual codes of lengths 64, 66 and 68, Information Processing Letters, 157. doi: 10.1016/j.ipl.2020.105927.  Google Scholar

[17]

J. GildeaA. KayaA. Korban and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. Math. Commun., 15 (2021), 471-485.  doi: 10.3934/amc.2020077.  Google Scholar

[18]

J. Gildea, A. Korban and A. M. Roberts, New binary self-dual codes of lengths 80, 84 and 96 from composite matrices, 2021, https://arXiv.org/abs/2106.12355. Google Scholar

[19]

A. M. Gleason, Weight polynomials of self-dual codes and the macwilliams identities, 1971,211–215.  Google Scholar

[20]

T. A. Gulliver and M. Harada, On extremal double circulant self-dual codes of lengths 90–96, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 403-415.  doi: 10.1007/s00200-019-00381-3.  Google Scholar

[21]

M. Gürel and N. Yankov, Self-dual codes with an automorphism of order 17, Math. Commun., 21 (2016), 97-107.   Google Scholar

[22]

T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 31 (2006), 319-335.   Google Scholar

[23]

S. Karadeniz and B. Yildiz, New extremal binary self-dual codes of length 66 as extensions of self-dual codes over $R_k$, J. Franklin Inst., 350, (2013), 1963–1973 doi: 10.1016/j.jfranklin.2013.05.015.  Google Scholar

[24]

M. Karlin, New binary coding results by circulants, IEEE Trans. Inform. Theory, IT-15 (1969), 81-92.  doi: 10.1109/tit.1969.1054261.  Google Scholar

[25]

A. KayaB. Yildiz and I. Siap, Quadratic residue codes over $\mathbb{F}_p+v\mathbb{F}_p$ and their Gray images, J. Pure Appl. Algebra, 218 (2014), 1999-2011.  doi: 10.1016/j.jpaa.2014.03.002.  Google Scholar

[26]

J.-L. Kim, New extremal self-dual codes of lengths 36, 38, and 58, IEEE Trans. Inform. Theory, 47 (2001), 386-393.  doi: 10.1109/18.904540.  Google Scholar

[27]

S. Ling and P. Solé, Type ii codes over $\mathbf { F_4+u} f_4$, European J. Combin., 22 (2001), 983-997.  doi: 10.1006/eujc.2001.0509.  Google Scholar

[28]

F. J. MacWilliamsC. L. Mallows and N. J. A Sloane, Generalizations of gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, IT-18 (1972), 794-805.  doi: 10.1109/tit.1972.1054898.  Google Scholar

[29]

F. J. MacWilliamsN. J. A. Sloane and J. G. Thompson, Good self dual codes exist, Discrete Math., 3 (1972), 153-162.  doi: 10.1016/0012-365X(72)90030-1.  Google Scholar

[30]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.  Google Scholar

[31]

A. M. Roberts, Weight Enumerator Parameter Database for Binary Self-Dual Codes, 2021, https://amr-wepd-bsdc.netlify.app Google Scholar

[32]

N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, Appl. Algebra Engrg. Comm. Comput., 32 (2021), 97-111.  doi: 10.1007/s00200-019-00403-0.  Google Scholar

[33]

N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and $s$-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.  Google Scholar

[34]

R. Yorgova and A. Wassermann, Binary self-dual codes with automorphisms of order 23, Des. Codes Cryptogr., 48 (2008), 155-164.  doi: 10.1007/s10623-007-9152-8.  Google Scholar

show all references

References:
[1]

D. AnevM. Harada and N. Yankov, New extremal singly even self-dual codes of lengths 64 and 66, J. Algebra Comb. Discrete Struct. Appl., 5 (2018), 143-151.  doi: 10.13069/jacodesmath.458601.  Google Scholar

[2]

E. R. BerlekampF. J. MacWilliams and N. J. A. Sloane, Gleason's theorem on self-dual codes, IEEE Trans. Inform. Theory, IT-18 (1972), 409-414.  doi: 10.1109/tit.1972.1054817.  Google Scholar

[3]

F. BernhardtP. Landrock and O. Manz, The extended golay codes considered as ideals, J. Combin. Theory Ser. A, 55 (1990), 235-246.  doi: 10.1016/0097-3165(90)90069-9.  Google Scholar

[4]

W. BosmaJ. Cannon and C. Playoust, The magma algebra system. I. the user language,, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[5]

C. L. ChenW. W Peterson and E. J. Weldon. Jr, Some results on quasi-cyclic codes, Information and Control, 15 (1969), 407-423.  doi: 10.1016/S0019-9958(69)90497-5.  Google Scholar

[6]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.  Google Scholar

[7]

P. J. Davis, Circulant Matrices, A Wiley-Interscience Publication; Pure and Applied Mathematics, John Wiley & Sons, New York-Chichester-Brisbane, 1979.  Google Scholar

[8]

S. T. DoughertyP. GaboritM. Harada and P. Solé, Type ii codes over ${\mathbf f}_2+u{\mathbf f}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.  Google Scholar

[9]

S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylyshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.  Google Scholar

[10]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylyshchak, Group rings, $g$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.  Google Scholar

[11]

S. T. DoughertyT. A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.  doi: 10.1109/18.641574.  Google Scholar

[12]

S. T. DoughertyB. Yildiz and S. Karadeniz, Codes over $r_k$, gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.  Google Scholar

[13]

S. DoughertyB. Yildiz and S. Karadeniz, Self-dual codes over $r_k$ and binary self-dual codes, Eur. J. Pure Appl. Math., 6 (2013), 89-106.   Google Scholar

[14]

P. Gaborit, Quadratic double circulant codes over fields, J. Combin. Theory Ser. A, 97 (2002), 85-107.  doi: 10.1006/jcta.2001.3198.  Google Scholar

[15]

S. D. Georgiou and E. Lappas, Self-dual codes from circulant matrices, Des. Codes Cryptogr., 64 (2012), 129-141.  doi: 10.1007/s10623-011-9510-4.  Google Scholar

[16]

J. Gildea, H. Hamilton, A. Kaya and B. Yildiz, Modified quadratic residue constructions and new extremal binary self-dual codes of lengths 64, 66 and 68, Information Processing Letters, 157. doi: 10.1016/j.ipl.2020.105927.  Google Scholar

[17]

J. GildeaA. KayaA. Korban and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. Math. Commun., 15 (2021), 471-485.  doi: 10.3934/amc.2020077.  Google Scholar

[18]

J. Gildea, A. Korban and A. M. Roberts, New binary self-dual codes of lengths 80, 84 and 96 from composite matrices, 2021, https://arXiv.org/abs/2106.12355. Google Scholar

[19]

A. M. Gleason, Weight polynomials of self-dual codes and the macwilliams identities, 1971,211–215.  Google Scholar

[20]

T. A. Gulliver and M. Harada, On extremal double circulant self-dual codes of lengths 90–96, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 403-415.  doi: 10.1007/s00200-019-00381-3.  Google Scholar

[21]

M. Gürel and N. Yankov, Self-dual codes with an automorphism of order 17, Math. Commun., 21 (2016), 97-107.   Google Scholar

[22]

T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 31 (2006), 319-335.   Google Scholar

[23]

S. Karadeniz and B. Yildiz, New extremal binary self-dual codes of length 66 as extensions of self-dual codes over $R_k$, J. Franklin Inst., 350, (2013), 1963–1973 doi: 10.1016/j.jfranklin.2013.05.015.  Google Scholar

[24]

M. Karlin, New binary coding results by circulants, IEEE Trans. Inform. Theory, IT-15 (1969), 81-92.  doi: 10.1109/tit.1969.1054261.  Google Scholar

[25]

A. KayaB. Yildiz and I. Siap, Quadratic residue codes over $\mathbb{F}_p+v\mathbb{F}_p$ and their Gray images, J. Pure Appl. Algebra, 218 (2014), 1999-2011.  doi: 10.1016/j.jpaa.2014.03.002.  Google Scholar

[26]

J.-L. Kim, New extremal self-dual codes of lengths 36, 38, and 58, IEEE Trans. Inform. Theory, 47 (2001), 386-393.  doi: 10.1109/18.904540.  Google Scholar

[27]

S. Ling and P. Solé, Type ii codes over $\mathbf { F_4+u} f_4$, European J. Combin., 22 (2001), 983-997.  doi: 10.1006/eujc.2001.0509.  Google Scholar

[28]

F. J. MacWilliamsC. L. Mallows and N. J. A Sloane, Generalizations of gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, IT-18 (1972), 794-805.  doi: 10.1109/tit.1972.1054898.  Google Scholar

[29]

F. J. MacWilliamsN. J. A. Sloane and J. G. Thompson, Good self dual codes exist, Discrete Math., 3 (1972), 153-162.  doi: 10.1016/0012-365X(72)90030-1.  Google Scholar

[30]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.  Google Scholar

[31]

A. M. Roberts, Weight Enumerator Parameter Database for Binary Self-Dual Codes, 2021, https://amr-wepd-bsdc.netlify.app Google Scholar

[32]

N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, Appl. Algebra Engrg. Comm. Comput., 32 (2021), 97-111.  doi: 10.1007/s00200-019-00403-0.  Google Scholar

[33]

N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and $s$-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.  Google Scholar

[34]

R. Yorgova and A. Wassermann, Binary self-dual codes with automorphisms of order 23, Des. Codes Cryptogr., 48 (2008), 155-164.  doi: 10.1007/s10623-007-9152-8.  Google Scholar

Table 1.  Self-dual code over $ \mathbb{F}_4+u \mathbb{F}_4 $ of length $ 64 $ from $ C_{4} $ and $ C_{4} $
$ A_{i} $ $ v_1 \in C_{4} $ $ v_2 \in C_{4} $ $ r_A $ $ |Aut(A_i)| $ $ \beta $
$ 1 $ $ (8966) $ $ (0000) $ $ (A617) $ $ 2^4 $ $ 0 $
$ A_{i} $ $ v_1 \in C_{4} $ $ v_2 \in C_{4} $ $ r_A $ $ |Aut(A_i)| $ $ \beta $
$ 1 $ $ (8966) $ $ (0000) $ $ (A617) $ $ 2^4 $ $ 0 $
Table 2.  Self-dual code over $ \mathbb{F}_2+u \mathbb{F}_2 $ of length $ 64 $ from $ C_{8} $ and $ C_{8} $
$ B_{i} $ $ v_1 \in C_{8} $ $ v_2 \in C_{8} $ $ r_A $ $ |Aut(B_i)| $ $ \beta $
$ 1 $ $ (uuu10311) $ $ (uu011uu0) $ $ (u0300013) $ $ 2^3 $ $ 0 $
$ B_{i} $ $ v_1 \in C_{8} $ $ v_2 \in C_{8} $ $ r_A $ $ |Aut(B_i)| $ $ \beta $
$ 1 $ $ (uuu10311) $ $ (uu011uu0) $ $ (u0300013) $ $ 2^3 $ $ 0 $
Table 3.  Self-dual code over $ \mathbb{F}_2+u \mathbb{F}_2 $ of length $ 64 $ from $ C_{2\cdot 4} $ and $ C_{2\cdot 4} $
$ C_{i} $ $ v_1 \in C_{2\cdot 4} $ $ v_2 \in C_{2\cdot 4} $ $ r_A $ $ |Aut(C_i)| $ $ \beta $
$ 1 $ $ (uu01u0u1) $ $ (u0u11u31) $ $ (u3u3u3u0) $ $ 2^{4} $ $ 48 $
$ C_{i} $ $ v_1 \in C_{2\cdot 4} $ $ v_2 \in C_{2\cdot 4} $ $ r_A $ $ |Aut(C_i)| $ $ \beta $
$ 1 $ $ (uu01u0u1) $ $ (u0u11u31) $ $ (u3u3u3u0) $ $ 2^{4} $ $ 48 $
Table 4.  Self-dual code of length $ 68 $ from extensions of $ C_1 $, $ C_2 $ and $ C_3 $
$ D_i $ Code $ c $ $ X $ $ \gamma $ $ \beta $ $ |Aut(E_i)| $
$ 1 $ $ A_1 $ $ 1 $ $ (0133010303011u1001333u01031uuu1u) $ $ 4 $ $ 113 $ $ 2 $
$ 2 $ $ B_1 $ $ u+1 $ $ (013011030003013301111030uuu13u10) $ $ \textbf{2} $ $ \textbf{61} $ $ 2 $
$ 3 $ $ C_1 $ $ u+1 $ $ (0u10303u110333001103u00130103303) $ $ \textbf{1} $ $ \textbf{179} $ $ 2 $
$ D_i $ Code $ c $ $ X $ $ \gamma $ $ \beta $ $ |Aut(E_i)| $
$ 1 $ $ A_1 $ $ 1 $ $ (0133010303011u1001333u01031uuu1u) $ $ 4 $ $ 113 $ $ 2 $
$ 2 $ $ B_1 $ $ u+1 $ $ (013011030003013301111030uuu13u10) $ $ \textbf{2} $ $ \textbf{61} $ $ 2 $
$ 3 $ $ C_1 $ $ u+1 $ $ (0u10303u110333001103u00130103303) $ $ \textbf{1} $ $ \textbf{179} $ $ 2 $
Table 5.  Self-dual codes over $ \mathbb{F}_2 $ of length $ 68 $ $ (W_{68, 2}) $ from $ C_{17} $ and $ C_{17} $
$ E_{i} $ $ v_1 \in C_{17} $ $ v_2 \in C_{17} $ $ r_A $ $ |Aut(D_i)| $ $ \gamma $ $ \beta $
$ 1 $ (00000000000011011) $ (00000000000000000) $ $ (00100110010110111) $ $ 2^2 \cdot 17 $ $ 0 $ $ 238 $
$ 2 $ (00000000110001111) $ (00000000000000000) $ $ (00100100101010101) $ $ 2^2 \cdot 17 $ $ 0 $ $ 272 $
$ E_{i} $ $ v_1 \in C_{17} $ $ v_2 \in C_{17} $ $ r_A $ $ |Aut(D_i)| $ $ \gamma $ $ \beta $
$ 1 $ (00000000000011011) $ (00000000000000000) $ $ (00100110010110111) $ $ 2^2 \cdot 17 $ $ 0 $ $ 238 $
$ 2 $ (00000000110001111) $ (00000000000000000) $ $ (00100100101010101) $ $ 2^2 \cdot 17 $ $ 0 $ $ 272 $
Table 6.  New codes of length 68 from neighbours of $ E_1 $ and $ E_2 $
$ F_{i} $ $ E_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(F_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 2 $ $ (0111011100100011000001001000100110) $ $ 2 $ $ \textbf{0} $ $ \textbf{208} $ $ W_{68, 2} $
$ 2 $ $ 2 $ $ (1110000011111000011000011110011000) $ $ 1 $ $ \textbf{0} $ $ \textbf{214} $ $ W_{68, 2} $
$ 3 $ $ 2 $ $ (0001000100001110111100001010011010) $ $ 2 $ $ \textbf{1} $ $ \textbf{191} $ $ W_{68, 2} $
$ 4 $ $ 2 $ $ (0010111111111110001111001010111001) $ $ 2 $ $ \textbf{1} $ $ \textbf{202} $ $ W_{68, 2} $
$ 5 $ $ 1 $ $ (1001101111101110011000101000010110) $ $ 1 $ $ \textbf{1} $ $ \textbf{210} $ $ W_{68, 2} $
$ 6 $ $ 2 $ $ (0101001000111001100011110011000101) $ $ 1 $ $ \textbf{1} $ $ \textbf{211} $ $ W_{68, 2} $
$ 7 $ $ 2 $ $ (0010101101010100111100000001010001) $ $ 1 $ $ \textbf{1} $ $ \textbf{229} $ $ W_{68, 2} $
$ 8 $ $ 2 $ $ (1111111111111111111011101111111111) $ $ 1 $ $ {} $ $ \textbf{317} $ $ W_{68, 1} $
$ F_{i} $ $ E_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(F_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 2 $ $ (0111011100100011000001001000100110) $ $ 2 $ $ \textbf{0} $ $ \textbf{208} $ $ W_{68, 2} $
$ 2 $ $ 2 $ $ (1110000011111000011000011110011000) $ $ 1 $ $ \textbf{0} $ $ \textbf{214} $ $ W_{68, 2} $
$ 3 $ $ 2 $ $ (0001000100001110111100001010011010) $ $ 2 $ $ \textbf{1} $ $ \textbf{191} $ $ W_{68, 2} $
$ 4 $ $ 2 $ $ (0010111111111110001111001010111001) $ $ 2 $ $ \textbf{1} $ $ \textbf{202} $ $ W_{68, 2} $
$ 5 $ $ 1 $ $ (1001101111101110011000101000010110) $ $ 1 $ $ \textbf{1} $ $ \textbf{210} $ $ W_{68, 2} $
$ 6 $ $ 2 $ $ (0101001000111001100011110011000101) $ $ 1 $ $ \textbf{1} $ $ \textbf{211} $ $ W_{68, 2} $
$ 7 $ $ 2 $ $ (0010101101010100111100000001010001) $ $ 1 $ $ \textbf{1} $ $ \textbf{229} $ $ W_{68, 2} $
$ 8 $ $ 2 $ $ (1111111111111111111011101111111111) $ $ 1 $ $ {} $ $ \textbf{317} $ $ W_{68, 1} $
Table 7.  New codes of length 68 from neighbours of $ F_7 $ and $ F_8 $
$ G_{i} $ $ F_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(G_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 8 $ $ (0001001101110000000000101011001100) $ $ 1 $ $ \textbf{0} $ $ \textbf{218} $ $ W_{68, 2} $
$ 2 $ $ 7 $ $ (0110000010001000111000111000100010) $ $ 1 $ $ \textbf{1} $ $ \textbf{193} $ $ W_{68, 2} $
$ 3 $ $ 7 $ $ (1000100101011000011011110011000000) $ $ 1 $ $ \textbf{1} $ $ \textbf{195} $ $ W_{68, 2} $
$ 4 $ $ 7 $ $ (0101001010010010000100100101001001) $ $ 1 $ $ 1 $ $ 233 $ $ W_{68, 2} $
$ 5 $ $ 7 $ $ (0111010010001001001000000100101010) $ $ 1 $ $ \textbf{2} $ $ \textbf{193} $ $ W_{68, 2} $
$ 6 $ $ 7 $ $ (1100010011000010110111011101101111) $ $ 1 $ $ \textbf{2} $ $ \textbf{195} $ $ W_{68, 2} $
$ G_{i} $ $ F_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(G_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 8 $ $ (0001001101110000000000101011001100) $ $ 1 $ $ \textbf{0} $ $ \textbf{218} $ $ W_{68, 2} $
$ 2 $ $ 7 $ $ (0110000010001000111000111000100010) $ $ 1 $ $ \textbf{1} $ $ \textbf{193} $ $ W_{68, 2} $
$ 3 $ $ 7 $ $ (1000100101011000011011110011000000) $ $ 1 $ $ \textbf{1} $ $ \textbf{195} $ $ W_{68, 2} $
$ 4 $ $ 7 $ $ (0101001010010010000100100101001001) $ $ 1 $ $ 1 $ $ 233 $ $ W_{68, 2} $
$ 5 $ $ 7 $ $ (0111010010001001001000000100101010) $ $ 1 $ $ \textbf{2} $ $ \textbf{193} $ $ W_{68, 2} $
$ 6 $ $ 7 $ $ (1100010011000010110111011101101111) $ $ 1 $ $ \textbf{2} $ $ \textbf{195} $ $ W_{68, 2} $
Table 8.  New codes of length 68 from neighbours of $ G_5 $
$ H_{i} $ $ G_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(H_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 5 $ $ (0010010110011000000010111001111110) $ $ 1 $ $ \textbf{1} $ $ \textbf{197} $ $ W_{68, 2} $
$ 2 $ $ 5 $ $ (0100001011001011101010110111011111) $ $ 1 $ $ \textbf{1} $ $ \textbf{199} $ $ W_{68, 2} $
$ 3 $ $ 5 $ $ (1101001011101101011111110111100111) $ $ 1 $ $ \textbf{2} $ $ \textbf{199} $ $ W_{68, 2} $
$ 4 $ $ 5 $ $ (0011000011001110011000001100000001) $ $ 1 $ $ \textbf{2} $ $ \textbf{191} $ $ W_{68, 2} $
$ 5 $ $ 5 $ $ (0001100100110010010101000111100100) $ $ 1 $ $ \textbf{2} $ $ \textbf{204} $ $ W_{68, 2} $
$ 6 $ $ 5 $ $ (1011101001000001101001010111011101) $ $ 1 $ $ \textbf{2} $ $ \textbf{218} $ $ W_{68, 2} $
$ H_{i} $ $ G_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(H_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 5 $ $ (0010010110011000000010111001111110) $ $ 1 $ $ \textbf{1} $ $ \textbf{197} $ $ W_{68, 2} $
$ 2 $ $ 5 $ $ (0100001011001011101010110111011111) $ $ 1 $ $ \textbf{1} $ $ \textbf{199} $ $ W_{68, 2} $
$ 3 $ $ 5 $ $ (1101001011101101011111110111100111) $ $ 1 $ $ \textbf{2} $ $ \textbf{199} $ $ W_{68, 2} $
$ 4 $ $ 5 $ $ (0011000011001110011000001100000001) $ $ 1 $ $ \textbf{2} $ $ \textbf{191} $ $ W_{68, 2} $
$ 5 $ $ 5 $ $ (0001100100110010010101000111100100) $ $ 1 $ $ \textbf{2} $ $ \textbf{204} $ $ W_{68, 2} $
$ 6 $ $ 5 $ $ (1011101001000001101001010111011101) $ $ 1 $ $ \textbf{2} $ $ \textbf{218} $ $ W_{68, 2} $
Table 9.  Code of length 68 from the neighbours of $ D_1 $
$ I_{i} $ $ D_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(I_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 1 $ $ (1111000110110011110111001010111101) $ $ 1 $ $ 5 $ $ 133 $ $ W_{68, 2} $
$ I_{i} $ $ D_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(I_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 1 $ $ (1111000110110011110111001010111101) $ $ 1 $ $ 5 $ $ 133 $ $ W_{68, 2} $
Table 10.  Code of length 68 from the neighbours of $ I_1 $
$ J_{i} $ $ I_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(J_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 1 $ $ (0000100001011000111001010100001100 $ $ 1 $ $ 6 $ $ 141 $ $ W_{68, 2} $
$ J_{i} $ $ I_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(J_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 1 $ $ (0000100001011000111001010100001100 $ $ 1 $ $ 6 $ $ 141 $ $ W_{68, 2} $
Table 11.  New codes of length 68 from the neighbours of $ J_1 $
$ K_{i} $ $ J_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(K_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 1 $ $ (1111111101001100010100001000010100) $ $ 1 $ $ \textbf{6} $ $ \textbf{131} $ $ W_{68, 2} $
$ 2 $ $ 1 $ $ (0000001110010111101110011111001111) $ $ 1 $ $ \textbf{7} $ $ \textbf{158} $ $ W_{68, 2} $
$ K_{i} $ $ J_{i} $ $ (x_{35}, x_{36}, ..., x_{68}) $ $ |Aut(K_i) | $ $ \gamma $ $ \beta $ Type
$ 1 $ $ 1 $ $ (1111111101001100010100001000010100) $ $ 1 $ $ \textbf{6} $ $ \textbf{131} $ $ W_{68, 2} $
$ 2 $ $ 1 $ $ (0000001110010111101110011111001111) $ $ 1 $ $ \textbf{7} $ $ \textbf{158} $ $ W_{68, 2} $
Table 12.  New codes of length 68 from the neighbours of $K_2$
$L_{i}$ $K_{i}$ $(x_{35}, x_{36}, ..., x_{68})$ $|Aut(L_i) |$ $\gamma$ $\beta$ Type
$1$ $2$ $(0110111111010100011101010011010101)$ $1$ $\textbf{7}$ $\textbf{155}$ $W_{68, 2}$
$2$ $2$ $(0101010101010001001010011101110010)$ $1$ $\textbf{7}$ $\textbf{156}$ $W_{68, 2}$
$3$ $2$ $(0010011101010101010111011110110110)$ $1$ $\textbf{7}$ $\textbf{157}$ $W_{68, 2}$
$4$ $2$ $(1101111110110111001111110101101100)$ $1$ $\textbf{7}$ $\textbf{159}$ $W_{68, 2}$
$5$ $2$ $(1001011111000110001111101100101110)$ $1$ $\textbf{7}$ $\textbf{160}$ $W_{68, 2}$
$6$ $2$ $(1100000100100000010100101100011010)$ $1$ $\textbf{7}$ $\textbf{162}$ $W_{68, 2}$
$7$ $2$ $(1000010000010110000111110010011111)$ $1$ $\textbf{7}$ $\textbf{164}$ $W_{68, 2}$
$8$ $2$ $(0100001001101111111010000101010001)$ $1$ $\textbf{7}$ $\textbf{165}$ $W_{68, 2}$
$9$ $2$ $(0011101000100011011101001111101111)$ $1$ $\textbf{7}$ $\textbf{167}$ $W_{68, 2}$
$L_{i}$ $K_{i}$ $(x_{35}, x_{36}, ..., x_{68})$ $|Aut(L_i) |$ $\gamma$ $\beta$ Type
$1$ $2$ $(0110111111010100011101010011010101)$ $1$ $\textbf{7}$ $\textbf{155}$ $W_{68, 2}$
$2$ $2$ $(0101010101010001001010011101110010)$ $1$ $\textbf{7}$ $\textbf{156}$ $W_{68, 2}$
$3$ $2$ $(0010011101010101010111011110110110)$ $1$ $\textbf{7}$ $\textbf{157}$ $W_{68, 2}$
$4$ $2$ $(1101111110110111001111110101101100)$ $1$ $\textbf{7}$ $\textbf{159}$ $W_{68, 2}$
$5$ $2$ $(1001011111000110001111101100101110)$ $1$ $\textbf{7}$ $\textbf{160}$ $W_{68, 2}$
$6$ $2$ $(1100000100100000010100101100011010)$ $1$ $\textbf{7}$ $\textbf{162}$ $W_{68, 2}$
$7$ $2$ $(1000010000010110000111110010011111)$ $1$ $\textbf{7}$ $\textbf{164}$ $W_{68, 2}$
$8$ $2$ $(0100001001101111111010000101010001)$ $1$ $\textbf{7}$ $\textbf{165}$ $W_{68, 2}$
$9$ $2$ $(0011101000100011011101001111101111)$ $1$ $\textbf{7}$ $\textbf{167}$ $W_{68, 2}$
Table 13.  New singly-even binary self-dual $ [96, 48, 16] $ codes from $ C_6 $ and $ C_6 $ over $ \mathbb{F}_4+u \mathbb{F}_4 $
$ C_{96, i} $ $ v_1 \in C_{6} $ $ v_2 \in C_{6} $ $ r_A $ $ |Aut(C_{96, i})| $ $ \alpha $ $ \beta $ $ \gamma $ Type
$ 1 $ $ (17DD00) $ $ (DC34EB) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11104} $ $ -\textbf{68} $ $ \textbf{0} $ $ W_{96, 2} $
$ 2 $ $ (C00E11) $ $ (C8BDA9) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{10208} $ $ -\textbf{52} $ $ \textbf{0} $ $ W_{96, 2} $
$ 3 $ $ (6482FF) $ $ (0D0D0D) $ $ (7C111C) $ $ 2^{4}\cdot 3 $ $ \textbf{11328} $ $ -\textbf{28} $ $ \textbf{0} $ $ W_{96, 2} $
$ 4 $ $ (1236FC) $ $ (914FD8) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11312} $ $ -\textbf{108} $ $ \textbf{2} $ $ W_{96, 2} $
$ 5 $ $ (3E222F) $ $ (8EBA97) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11728} $ $ -\textbf{100} $ $ \textbf{2} $ $ W_{96, 2} $
$ 6 $ $ (C6EB5F) $ $ (EA56C1) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11184} $ $ -\textbf{84} $ $ \textbf{2} $ $ W_{96, 2} $
$ 7 $ $ (B88D66) $ $ (99680F) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{10592} $ $ -\textbf{80} $ $ \textbf{2} $ $ W_{96, 2} $
$ 8 $ $ (1D271F) $ $ (A7870E) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11184} $ $ -\textbf{76} $ $ \textbf{2} $ $ W_{96, 2} $
$ 9 $ $ (0A7B3D) $ $ (126325) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11488} $ $ -\textbf{72} $ $ \textbf{2} $ $ W_{96, 2} $
$ 10 $ $ (535DD1) $ $ (F1CECB) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{10624} $ $ -\textbf{64} $ $ \textbf{2} $ $ W_{96, 2} $
$ 11 $ $ (C2F3D9) $ $ (1EDF0A) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{10944} $ $ -\textbf{60} $ $ \textbf{2} $ $ W_{96, 2} $
$ 12 $ $ (D4787D) $ $ (9FCD5D) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11224} $ $ -\textbf{56} $ $ \textbf{2} $ $ W_{96, 2} $
$ 13 $ $ (344A57) $ $ (47F231) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{10728} $ $ -\textbf{48} $ $ \textbf{2} $ $ W_{96, 2} $
$ 14 $ $ (D399AB) $ $ (6DB3F0) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{12320} $ $ -\textbf{156} $ $ \textbf{4} $ $ W_{96, 2} $
$ 15 $ $ (F7A016) $ $ (AE0EBF) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11104} $ $ -\textbf{140} $ $ \textbf{4} $ $ W_{96, 2} $
$ 16 $ $ (EF2862) $ $ (8867A5) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11528} $ $ -\textbf{136} $ $ \textbf{4} $ $ W_{96, 2} $
$ 17 $ $ (A56B03) $ $ (317717) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11472} $ $ -\textbf{132} $ $ \textbf{4} $ $ W_{96, 2} $
$ 18 $ $ (4250B6) $ $ (979C73) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11728} $ $ -\textbf{120} $ $ \textbf{4} $ $ W_{96, 2} $
$ 19 $ $ (01A176) $ $ (CA0455) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11360} $ $ -\textbf{116} $ $ \textbf{4} $ $ W_{96, 2} $
$ 20 $ $ (FE26F3) $ $ (23B01B) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11160} $ $ -\textbf{112} $ $ \textbf{4} $ $ W_{96, 2} $
$ 21 $ $ (6C02AE) $ $ (6F098F) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11328} $ $ -\textbf{112} $ $ \textbf{4} $ $ W_{96, 2} $
$ 22 $ $ (F79924) $ $ (AA77C9) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11568} $ $ -\textbf{112} $ $ \textbf{4} $ $ W_{96, 2} $
$ 23 $ $ (5FFB7B) $ $ (4A6DD5) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11088} $ $ -\textbf{108} $ $ \textbf{4} $ $ W_{96, 2} $
$ 24 $ $ (3522FB) $ $ (C05E9F) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11488} $ $ -\textbf{108} $ $ \textbf{4} $ $ W_{96, 2} $
$ 25 $ $ (9E88C6) $ $ (07DE86) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11072} $ $ -\textbf{104} $ $ \textbf{4} $ $ W_{96, 2} $
$ 26 $ $ (088C5F) $ $ (77601A) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{10672} $ $ -\textbf{100} $ $ \textbf{4} $ $ W_{96, 2} $
$ 27 $ $ (313674) $ $ (343BD9) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{10944} $ $ -\textbf{100} $ $ \textbf{4} $ $ W_{96, 2} $
$ 28 $ $ (35EA9C) $ $ (930785) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11048} $ $ -\textbf{96} $ $ \textbf{4} $ $ W_{96, 2} $
$ 29 $ $ (505084) $ $ (57696E) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11064} $ $ -\textbf{88} $ $ \textbf{4} $ $ W_{96, 2} $
$ 30 $ $ (6D4401) $ $ (92206E) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11504} $ $ -\textbf{84} $ $ \textbf{4} $ $ W_{96, 2} $
$ 31 $ $ (58263B) $ $ (D98510) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{10888} $ $ -\textbf{80} $ $ \textbf{4} $ $ W_{96, 2} $
$ 32 $ $ (9AE7CA) $ $ (74D032) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{12504} $ $ -\textbf{160} $ $ \textbf{6} $ $ W_{96, 2} $
$ 33 $ $ (73A8CF) $ $ (D46308) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11552} $ $ -\textbf{156} $ $ \textbf{6} $ $ W_{96, 2} $
$ 34 $ $ (F97D3B) $ $ (6B7D82) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11872} $ $ -\textbf{156} $ $ \textbf{6} $ $ W_{96, 2} $
$ 35 $ $ (B4196E) $ $ (97B0E5) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11376} $ $ -\textbf{148} $ $ \textbf{6} $ $ W_{96, 2} $
$ 36 $ $ (47E5CD) $ $ (CECECE) $ $ (6B6DBD) $ $ 2^{4}\cdot 3 $ $ \textbf{11736} $ $ -\textbf{148} $ $ \textbf{6} $ $ W_{96, 2} $
$ 37 $ $ (6B78E6) $ $ (113CD9) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11576} $ $ -\textbf{140} $ $ \textbf{6} $ $ W_{96, 2} $
$ 38 $ $ (B1C856) $ $ (F7452D) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{12448} $ $ -\textbf{140} $ $ \textbf{6} $ $ W_{96, 2} $
$ 39 $ $ (FC0863) $ $ (18BD3B) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11008} $ $ -\textbf{132} $ $ \textbf{6} $ $ W_{96, 2} $
$ 40 $ $ (DC4A91) $ $ (A58C34) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11304} $ $ -\textbf{132} $ $ \textbf{6} $ $ W_{96, 2} $
$ 41 $ $ (8798CD) $ $ (FD6017) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11312} $ $ -\textbf{120} $ $ \textbf{6} $ $ W_{96, 2} $
$ 42 $ $ (9217CF) $ $ (DCD676) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{12928} $ $ -\textbf{192} $ $ \textbf{8} $ $ W_{96, 2} $
$ 43 $ $ (C620D5) $ $ (EAE546) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11768} $ $ -\textbf{172} $ $ \textbf{8} $ $ W_{96, 2} $
$ 44 $ $ (3617E2) $ $ (19B065) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11272} $ $ -\textbf{168} $ $ \textbf{8} $ $ W_{96, 2} $
$ 45 $ $ (3BAE33) $ $ (5F852E) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11968} $ $ -\textbf{168} $ $ \textbf{8} $ $ W_{96, 2} $
$ 46 $ $ (E90589) $ $ (D62FE2) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{12896} $ $ -\textbf{260} $ $ \textbf{12} $ $ W_{96, 2} $
$ 47 $ $ (B89454) $ $ (F5F331) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{12288} $ $ -\textbf{244} $ $ \textbf{12} $ $ W_{96, 2} $
$ 48 $ $ (E9DA51) $ $ (6D030D) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{12320} $ $ -\textbf{244} $ $ \textbf{12} $ $ W_{96, 2} $
$ C_{96, i} $ $ v_1 \in C_{6} $ $ v_2 \in C_{6} $ $ r_A $ $ |Aut(C_{96, i})| $ $ \alpha $ $ \beta $ $ \gamma $ Type
$ 1 $ $ (17DD00) $ $ (DC34EB) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11104} $ $ -\textbf{68} $ $ \textbf{0} $ $ W_{96, 2} $
$ 2 $ $ (C00E11) $ $ (C8BDA9) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{10208} $ $ -\textbf{52} $ $ \textbf{0} $ $ W_{96, 2} $
$ 3 $ $ (6482FF) $ $ (0D0D0D) $ $ (7C111C) $ $ 2^{4}\cdot 3 $ $ \textbf{11328} $ $ -\textbf{28} $ $ \textbf{0} $ $ W_{96, 2} $
$ 4 $ $ (1236FC) $ $ (914FD8) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11312} $ $ -\textbf{108} $ $ \textbf{2} $ $ W_{96, 2} $
$ 5 $ $ (3E222F) $ $ (8EBA97) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11728} $ $ -\textbf{100} $ $ \textbf{2} $ $ W_{96, 2} $
$ 6 $ $ (C6EB5F) $ $ (EA56C1) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11184} $ $ -\textbf{84} $ $ \textbf{2} $ $ W_{96, 2} $
$ 7 $ $ (B88D66) $ $ (99680F) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{10592} $ $ -\textbf{80} $ $ \textbf{2} $ $ W_{96, 2} $
$ 8 $ $ (1D271F) $ $ (A7870E) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11184} $ $ -\textbf{76} $ $ \textbf{2} $ $ W_{96, 2} $
$ 9 $ $ (0A7B3D) $ $ (126325) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11488} $ $ -\textbf{72} $ $ \textbf{2} $ $ W_{96, 2} $
$ 10 $ $ (535DD1) $ $ (F1CECB) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{10624} $ $ -\textbf{64} $ $ \textbf{2} $ $ W_{96, 2} $
$ 11 $ $ (C2F3D9) $ $ (1EDF0A) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{10944} $ $ -\textbf{60} $ $ \textbf{2} $ $ W_{96, 2} $
$ 12 $ $ (D4787D) $ $ (9FCD5D) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11224} $ $ -\textbf{56} $ $ \textbf{2} $ $ W_{96, 2} $
$ 13 $ $ (344A57) $ $ (47F231) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{10728} $ $ -\textbf{48} $ $ \textbf{2} $ $ W_{96, 2} $
$ 14 $ $ (D399AB) $ $ (6DB3F0) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{12320} $ $ -\textbf{156} $ $ \textbf{4} $ $ W_{96, 2} $
$ 15 $ $ (F7A016) $ $ (AE0EBF) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11104} $ $ -\textbf{140} $ $ \textbf{4} $ $ W_{96, 2} $
$ 16 $ $ (EF2862) $ $ (8867A5) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11528} $ $ -\textbf{136} $ $ \textbf{4} $ $ W_{96, 2} $
$ 17 $ $ (A56B03) $ $ (317717) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11472} $ $ -\textbf{132} $ $ \textbf{4} $ $ W_{96, 2} $
$ 18 $ $ (4250B6) $ $ (979C73) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11728} $ $ -\textbf{120} $ $ \textbf{4} $ $ W_{96, 2} $
$ 19 $ $ (01A176) $ $ (CA0455) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11360} $ $ -\textbf{116} $ $ \textbf{4} $ $ W_{96, 2} $
$ 20 $ $ (FE26F3) $ $ (23B01B) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11160} $ $ -\textbf{112} $ $ \textbf{4} $ $ W_{96, 2} $
$ 21 $ $ (6C02AE) $ $ (6F098F) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11328} $ $ -\textbf{112} $ $ \textbf{4} $ $ W_{96, 2} $
$ 22 $ $ (F79924) $ $ (AA77C9) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11568} $ $ -\textbf{112} $ $ \textbf{4} $ $ W_{96, 2} $
$ 23 $ $ (5FFB7B) $ $ (4A6DD5) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11088} $ $ -\textbf{108} $ $ \textbf{4} $ $ W_{96, 2} $
$ 24 $ $ (3522FB) $ $ (C05E9F) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11488} $ $ -\textbf{108} $ $ \textbf{4} $ $ W_{96, 2} $
$ 25 $ $ (9E88C6) $ $ (07DE86) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11072} $ $ -\textbf{104} $ $ \textbf{4} $ $ W_{96, 2} $
$ 26 $ $ (088C5F) $ $ (77601A) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{10672} $ $ -\textbf{100} $ $ \textbf{4} $ $ W_{96, 2} $
$ 27 $ $ (313674) $ $ (343BD9) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{10944} $ $ -\textbf{100} $ $ \textbf{4} $ $ W_{96, 2} $
$ 28 $ $ (35EA9C) $ $ (930785) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11048} $ $ -\textbf{96} $ $ \textbf{4} $ $ W_{96, 2} $
$ 29 $ $ (505084) $ $ (57696E) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11064} $ $ -\textbf{88} $ $ \textbf{4} $ $ W_{96, 2} $
$ 30 $ $ (6D4401) $ $ (92206E) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11504} $ $ -\textbf{84} $ $ \textbf{4} $ $ W_{96, 2} $
$ 31 $ $ (58263B) $ $ (D98510) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{10888} $ $ -\textbf{80} $ $ \textbf{4} $ $ W_{96, 2} $
$ 32 $ $ (9AE7CA) $ $ (74D032) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{12504} $ $ -\textbf{160} $ $ \textbf{6} $ $ W_{96, 2} $
$ 33 $ $ (73A8CF) $ $ (D46308) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11552} $ $ -\textbf{156} $ $ \textbf{6} $ $ W_{96, 2} $
$ 34 $ $ (F97D3B) $ $ (6B7D82) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11872} $ $ -\textbf{156} $ $ \textbf{6} $ $ W_{96, 2} $
$ 35 $ $ (B4196E) $ $ (97B0E5) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11376} $ $ -\textbf{148} $ $ \textbf{6} $ $ W_{96, 2} $
$ 36 $ $ (47E5CD) $ $ (CECECE) $ $ (6B6DBD) $ $ 2^{4}\cdot 3 $ $ \textbf{11736} $ $ -\textbf{148} $ $ \textbf{6} $ $ W_{96, 2} $
$ 37 $ $ (6B78E6) $ $ (113CD9) $ $ (F656F5) $ $ 2^{4} $ $ \textbf{11576} $ $ -\textbf{140} $ $ \textbf{6} $ $ W_{96, 2} $
$ 38 $ $ (B1C856) $ $ (F7452D) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{12448} $ $ -\textbf{140} $ $ \textbf{6} $ $ W_{96, 2} $
$ 39 $ $ (FC0863) $ $ (18BD3B) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{11008} $ $ -\textbf{132} $ $ \textbf{6} $ $ W_{96, 2} $
$ 40 $ $ (DC4A91) $ $ (A58C34) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{11304} $ $ -\textbf{132} $ $ \textbf{6} $ $ W_{96, 2} $
$ 41 $ $ (8798CD) $ $ (FD6017) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11312} $ $ -\textbf{120} $ $ \textbf{6} $ $ W_{96, 2} $
$ 42 $ $ (9217CF) $ $ (DCD676) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{12928} $ $ -\textbf{192} $ $ \textbf{8} $ $ W_{96, 2} $
$ 43 $ $ (C620D5) $ $ (EAE546) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11768} $ $ -\textbf{172} $ $ \textbf{8} $ $ W_{96, 2} $
$ 44 $ $ (3617E2) $ $ (19B065) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11272} $ $ -\textbf{168} $ $ \textbf{8} $ $ W_{96, 2} $
$ 45 $ $ (3BAE33) $ $ (5F852E) $ $ (7C111C) $ $ 2^{4} $ $ \textbf{11968} $ $ -\textbf{168} $ $ \textbf{8} $ $ W_{96, 2} $
$ 46 $ $ (E90589) $ $ (D62FE2) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{12896} $ $ -\textbf{260} $ $ \textbf{12} $ $ W_{96, 2} $
$ 47 $ $ (B89454) $ $ (F5F331) $ $ (D4DE6E) $ $ 2^{4} $ $ \textbf{12288} $ $ -\textbf{244} $ $ \textbf{12} $ $ W_{96, 2} $
$ 48 $ $ (E9DA51) $ $ (6D030D) $ $ (6B6DBD) $ $ 2^{4} $ $ \textbf{12320} $ $ -\textbf{244} $ $ \textbf{12} $ $ W_{96, 2} $
[1]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[2]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077

[3]

Suat Karadeniz, Bahattin Yildiz. Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$. Advances in Mathematics of Communications, 2012, 6 (2) : 193-202. doi: 10.3934/amc.2012.6.193

[4]

Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2020, 14 (4) : 677-702. doi: 10.3934/amc.2020037

[5]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[6]

Christos Koukouvinos, Dimitris E. Simos. Construction of new self-dual codes over $GF(5)$ using skew-Hadamard matrices. Advances in Mathematics of Communications, 2009, 3 (3) : 251-263. doi: 10.3934/amc.2009.3.251

[7]

T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223

[8]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[9]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[10]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[11]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[12]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[13]

Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014

[14]

Stefka Bouyuklieva, Zlatko Varbanov. Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Advances in Mathematics of Communications, 2011, 5 (2) : 191-198. doi: 10.3934/amc.2011.5.191

[15]

Maria Bortos, Joe Gildea, Abidin Kaya, Adrian Korban, Alexander Tylyshchak. New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020111

[16]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[17]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[18]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[19]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[20]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (117)
  • HTML views (123)
  • Cited by (0)

[Back to Top]