doi: 10.3934/amc.2021056
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Reversible $ G $-codes over the ring $ {\mathcal{F}}_{j,k} $ with applications to DNA codes

1. 

Faculty of Science, Department of Mathematics, Trakya University, Edirne, Turkey

2. 

Science and Art Faculty, Department of Mathematics, Ondokuz Mays University, Samsun, Turkey

3. 

Department of Mathematics, University of Scranton, Scranton, USA

4. 

Department of Mathematical and Physical Sciences, University of Chester, Chester, England

5. 

Faculty of Engineering, Department of Natural and Mathematical Sciences, Tarsus University, Mersin, Turkey

6. 

Faculty of Engineering, Department of Computer Engineering, Tarsus University, Mersin, Turkey

* Corresponding author: Adrian Korban

Received  March 2021 Revised  September 2021 Early access December 2021

In this paper, we show that one can construct a $ G $-code from group rings that is reversible. Specifically, we show that given a group with a subgroup of order half the order of the ambient group with an element that is its own inverse outside the subgroup, we can give an ordering of the group elements for which $ G $-codes are reversible of index $ \alpha $. Additionally, we introduce a new family of rings, $ {\mathcal{F}}_{j,k} $, whose base is the finite field of order $ 4 $ and study reversible $ G $-codes over this family of rings. Moreover, we present some possible applications of reversible $ G $-codes over $ {\mathcal{F}}_{j,k} $ to reversible DNA codes. We construct many reversible $ G $-codes over $ {\mathbb{F}}_4 $ of which some are optimal. These codes can be used to obtain reversible DNA codes.

Citation: Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Adrian Korban, Serap Şahinkaya, Deniz Ustun. Reversible $ G $-codes over the ring $ {\mathcal{F}}_{j,k} $ with applications to DNA codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2021056
References:
[1]

T. AbualrubA. Ghrayeb and X. N. Zeng, Construction of cyclic codes over $GF(4)$ for DNA computing, J. Franklin Inst., 343 (2006), 448-457.  doi: 10.1016/j.jfranklin.2006.02.009.

[2]

L. Adleman, Molecular computation of the solutions to combinatorial problems, Science, 266 (1994), 1021-1024.  doi: 10.1126/science.7973651.

[3]

L. AdlemanP. W. K. RothemundS. Rowies and E. Winfree, On applying molecular computation to the data encryption standard, J. Comp. Biology, 6 (1999), 53-63.  doi: 10.1089/cmb.1999.6.53.

[4]

D. BonehC. Dunworth and R. Lipton, Breaking DES using molecular computer, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 27 (1996), 37-65. 

[5]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.

[6]

Y. CengellenmisA. Dertli and S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr., 72 (2014), 559-580.  doi: 10.1007/s10623-012-9787-y.

[7]

Y. Cengellenmis, A. Dertli, S. T. Dougherty, A. Korban, S. Sahinkaya and D. Ustun, Generator matrices for the manuscript entitled reversible $G$–Codes over the ring ${\mathcal{F}}_{j, k}$ with applications to DNA codes, available at https://sites.google.com/view/adriankorban/generator-matrices.

[8]

S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, Springer Briefs in Mathematics, Springer, 2017. doi: 10.1007/978-3-319-59806-2.

[9]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.

[10]

S. T. DoughertyB. Yildiz and S. Karadeniz, Codes over $R_k$, Gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.

[11]

S. T. DoughertyB. Yildiz and S. Karadeniz, Self-dual codes over $R_k$ and binary self-dual codes, Eur. J. Pure Appl. Math., 6 (2013), 89-106. 

[12]

F. Gursoy, E. S. Oztas and A. Ozkan, Reversible DNA codes over a family of non-chain rings, https://arXiv.org/pdf/1711.02385.pdf.

[13]

T. Hurley, Group rings and rings of matrices, Int. Jour. Pure and Appl. Math, 31 (2006), 319-335. 

[14]

A. Korban, S. Sahinkaya and D. Ustun, An Application of the virus optimization algorithm to the problem of finding extremal binary self-dual codes, arXiv: 2103.07739v1.

[15]

M. Mansuripur, P. K. Khulbe, S. M. Kubler, J. W. Perry, M. S. Giridhar and N. Peyghambarian, Information storage and retrieval using macromolecules as storage media, Ptical Data Storage, OSA Technical Digest Series (Optical Society of America), paper TuC2, 2003.

[16]

C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, , Kluwer Academic Publishers, Dordrecht, 2002.

[17]

S. K. Sehgal, Units in Integral Group Rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, 69. Longman Scientific & Technical, Harlow, 1993.

show all references

References:
[1]

T. AbualrubA. Ghrayeb and X. N. Zeng, Construction of cyclic codes over $GF(4)$ for DNA computing, J. Franklin Inst., 343 (2006), 448-457.  doi: 10.1016/j.jfranklin.2006.02.009.

[2]

L. Adleman, Molecular computation of the solutions to combinatorial problems, Science, 266 (1994), 1021-1024.  doi: 10.1126/science.7973651.

[3]

L. AdlemanP. W. K. RothemundS. Rowies and E. Winfree, On applying molecular computation to the data encryption standard, J. Comp. Biology, 6 (1999), 53-63.  doi: 10.1089/cmb.1999.6.53.

[4]

D. BonehC. Dunworth and R. Lipton, Breaking DES using molecular computer, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 27 (1996), 37-65. 

[5]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.

[6]

Y. CengellenmisA. Dertli and S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr., 72 (2014), 559-580.  doi: 10.1007/s10623-012-9787-y.

[7]

Y. Cengellenmis, A. Dertli, S. T. Dougherty, A. Korban, S. Sahinkaya and D. Ustun, Generator matrices for the manuscript entitled reversible $G$–Codes over the ring ${\mathcal{F}}_{j, k}$ with applications to DNA codes, available at https://sites.google.com/view/adriankorban/generator-matrices.

[8]

S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, Springer Briefs in Mathematics, Springer, 2017. doi: 10.1007/978-3-319-59806-2.

[9]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.

[10]

S. T. DoughertyB. Yildiz and S. Karadeniz, Codes over $R_k$, Gray maps and their binary images, Finite Fields Appl., 17 (2011), 205-219.  doi: 10.1016/j.ffa.2010.11.002.

[11]

S. T. DoughertyB. Yildiz and S. Karadeniz, Self-dual codes over $R_k$ and binary self-dual codes, Eur. J. Pure Appl. Math., 6 (2013), 89-106. 

[12]

F. Gursoy, E. S. Oztas and A. Ozkan, Reversible DNA codes over a family of non-chain rings, https://arXiv.org/pdf/1711.02385.pdf.

[13]

T. Hurley, Group rings and rings of matrices, Int. Jour. Pure and Appl. Math, 31 (2006), 319-335. 

[14]

A. Korban, S. Sahinkaya and D. Ustun, An Application of the virus optimization algorithm to the problem of finding extremal binary self-dual codes, arXiv: 2103.07739v1.

[15]

M. Mansuripur, P. K. Khulbe, S. M. Kubler, J. W. Perry, M. S. Giridhar and N. Peyghambarian, Information storage and retrieval using macromolecules as storage media, Ptical Data Storage, OSA Technical Digest Series (Optical Society of America), paper TuC2, 2003.

[16]

C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, , Kluwer Academic Publishers, Dordrecht, 2002.

[17]

S. K. Sehgal, Units in Integral Group Rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, 69. Longman Scientific & Technical, Harlow, 1993.

Table 1.  Reversible Group Codes from $ {\mathcal{G}}_1 $ over $ {\mathbb{F}}_4 $
$ C_i $ $ [n,k,d] $
$ C_1 $ $ [24,11,6] $
$ C_2 $ $ [24,10,8] $
$ C_3 $ $ [26,18,4] $
$ C_4 $ $ [28,16,4] $
$ C_5 $ $ [28,17,4] $
$ C_6 $ $ [28,18,4] $
$ C_7 $ $ [28,19,4] $
$ C_8 $ $ [28,20,4] $
$ C_9 $ $ [30,18,6] $
$ C_{10} $ $ [30,19,6] $
$ C_{11} $ $ {\bf{[30,20,6]}} $
$ C_{12} $ $ [32,18,4] $
$ C_{13} $ $ [32,20,4] $
$ C_{14} $ $ [32,22,4] $
$ C_i $ $ [n,k,d] $
$ C_1 $ $ [24,11,6] $
$ C_2 $ $ [24,10,8] $
$ C_3 $ $ [26,18,4] $
$ C_4 $ $ [28,16,4] $
$ C_5 $ $ [28,17,4] $
$ C_6 $ $ [28,18,4] $
$ C_7 $ $ [28,19,4] $
$ C_8 $ $ [28,20,4] $
$ C_9 $ $ [30,18,6] $
$ C_{10} $ $ [30,19,6] $
$ C_{11} $ $ {\bf{[30,20,6]}} $
$ C_{12} $ $ [32,18,4] $
$ C_{13} $ $ [32,20,4] $
$ C_{14} $ $ [32,22,4] $
Table 2.  Reversible Group Codes from $ {\mathcal{G}}_2 $ over $ {\mathbb{F}}_4 $
$ C_i $ $ [n,k,d] $
$ C_{15} $ $ [40,24,5] $
$ C_{16} $ $ [40,28,4] $
$ C_{17} $ $ [40,28,5] $
$ C_{18} $ $ [40,28,6] $
$ C_{19} $ $ [40,29,4] $
$ C_{20} $ $ [40,30,5] $
$ C_{21} $ $ [44,34,2] $
$ C_{22} $ $ [44,32,4] $
$ C_{23} $ $ {\bf{[46,44,2]}} $
$ C_{24} $ $ {\bf{[46,45,2]}} $
$ C_{25} $ $ [48,38,4] $
$ C_{26} $ $ [48,39,2] $
$ C_{27} $ $ [48,39,2] $
$ C_{28} $ $ [48,40,4] $
$ C_{29} $ $ [50,35,4] $
$ C_{30} $ $ [50,36,4] $
$ C_{31} $ $ [50,39,4] $
$ C_{32} $ $ [50,40,3] $
$ C_{33} $ $ [52,38,4] $
$ C_{34} $ $ [52,40,5] $
$ C_{35} $ $ [54,46,2] $
$ C_{36} $ $ [54,47,2] $
$ C_{37} $ $ [54,48,2] $
$ C_{38} $ $ [54,49,2] $
$ C_{39} $ $ [54,50,2] $
$ C_{40} $ $ {\bf{[54,51,2]}} $
$ C_{41} $ $ {\bf{[54,52,2]}} $
$ C_{42} $ $ {\bf{[54,53,2]}} $
$ C_{43} $ $ [56,42,2] $
$ C_{44} $ $ [56,44,4] $
$ C_{45} $ $ [56,45,4] $
$ C_{46} $ $ [56,46,4] $
$ C_{47} $ $ [58,43,6] $
$ C_{48} $ $ [58,44,6] $
$ C_i $ $ [n,k,d] $
$ C_{15} $ $ [40,24,5] $
$ C_{16} $ $ [40,28,4] $
$ C_{17} $ $ [40,28,5] $
$ C_{18} $ $ [40,28,6] $
$ C_{19} $ $ [40,29,4] $
$ C_{20} $ $ [40,30,5] $
$ C_{21} $ $ [44,34,2] $
$ C_{22} $ $ [44,32,4] $
$ C_{23} $ $ {\bf{[46,44,2]}} $
$ C_{24} $ $ {\bf{[46,45,2]}} $
$ C_{25} $ $ [48,38,4] $
$ C_{26} $ $ [48,39,2] $
$ C_{27} $ $ [48,39,2] $
$ C_{28} $ $ [48,40,4] $
$ C_{29} $ $ [50,35,4] $
$ C_{30} $ $ [50,36,4] $
$ C_{31} $ $ [50,39,4] $
$ C_{32} $ $ [50,40,3] $
$ C_{33} $ $ [52,38,4] $
$ C_{34} $ $ [52,40,5] $
$ C_{35} $ $ [54,46,2] $
$ C_{36} $ $ [54,47,2] $
$ C_{37} $ $ [54,48,2] $
$ C_{38} $ $ [54,49,2] $
$ C_{39} $ $ [54,50,2] $
$ C_{40} $ $ {\bf{[54,51,2]}} $
$ C_{41} $ $ {\bf{[54,52,2]}} $
$ C_{42} $ $ {\bf{[54,53,2]}} $
$ C_{43} $ $ [56,42,2] $
$ C_{44} $ $ [56,44,4] $
$ C_{45} $ $ [56,45,4] $
$ C_{46} $ $ [56,46,4] $
$ C_{47} $ $ [58,43,6] $
$ C_{48} $ $ [58,44,6] $
[1]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[2]

Zihui Liu. Galois LCD codes over rings. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022002

[3]

Steven T. Dougherty, Esengül Saltürk, Steve Szabo. Codes over local rings of order 16 and binary codes. Advances in Mathematics of Communications, 2016, 10 (2) : 379-391. doi: 10.3934/amc.2016012

[4]

Gianira N. Alfarano, Anina Gruica, Julia Lieb, Joachim Rosenthal. Convolutional codes over finite chain rings, MDP codes and their characterization. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022028

[5]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[6]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[7]

Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253

[8]

Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

[9]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[10]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[11]

Ferruh Özbudak, Patrick Solé. Gilbert-Varshamov type bounds for linear codes over finite chain rings. Advances in Mathematics of Communications, 2007, 1 (1) : 99-109. doi: 10.3934/amc.2007.1.99

[12]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[13]

Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035

[14]

Zihui Liu, Dajian Liao. Higher weights and near-MDR codes over chain rings. Advances in Mathematics of Communications, 2018, 12 (4) : 761-772. doi: 10.3934/amc.2018045

[15]

Steven T. Dougherty, Abidin Kaya, Esengül Saltürk. Cyclic codes over local Frobenius rings of order 16. Advances in Mathematics of Communications, 2017, 11 (1) : 99-114. doi: 10.3934/amc.2017005

[16]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[17]

Hai Q. Dinh, Hien D. T. Nguyen. On some classes of constacyclic codes over polynomial residue rings. Advances in Mathematics of Communications, 2012, 6 (2) : 175-191. doi: 10.3934/amc.2012.6.175

[18]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[19]

Thomas Feulner. Canonization of linear codes over $\mathbb Z$4. Advances in Mathematics of Communications, 2011, 5 (2) : 245-266. doi: 10.3934/amc.2011.5.245

[20]

Nuh Aydin, Nicholas Connolly, Markus Grassl. Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes. Advances in Mathematics of Communications, 2017, 11 (1) : 245-258. doi: 10.3934/amc.2017016

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (320)
  • HTML views (180)
  • Cited by (0)

[Back to Top]