doi: 10.3934/amc.2021059
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Generic constructions of MDS Euclidean self-dual codes via GRS codes

1. 

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

2. 

School of Cyber Science and Technology, Shandong University, Qingdao 266237, China

3. 

Chern Institute of Mathematics and LPMC, and Tianjin Key Laboratory of Network, and Data Security Technology, Nankai University, Tianjin 300071, China

4. 

Ant Group, Beijing 100020, China

* Corresponding author: Weijun Fang

Received  April 2021 Revised  September 2021 Early access December 2021

Recently, the construction of new MDS Euclidean self-dual codes has been widely investigated. In this paper, for square $ q $, we utilize generalized Reed-Solomon (GRS) codes and their extended codes to provide four generic families of $ q $-ary MDS Euclidean self-dual codes of lengths in the form $ s\frac{q-1}{a}+t\frac{q-1}{b} $, where $ s $ and $ t $ range in some interval and $ a, b \,|\, (q -1) $. In particular, for large square $ q $, our constructions take up a proportion of generally more than 34% in all the possible lengths of $ q $-ary MDS Euclidean self-dual codes, which is larger than the previous results. Moreover, two new families of MDS Euclidean self-orthogonal codes and two new families of MDS Euclidean almost self-dual codes are given similarly.

Citation: Ziteng Huang, Weijun Fang, Fang-Wei Fu, Fengting Li. Generic constructions of MDS Euclidean self-dual codes via GRS codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2021059
References:
[1]

S. BalajiM. KrishnanM. VajhaV. RamkumarB. Sasidharan and P. Kumar, Erasure coding for distributed storage: An overview, Sci. China Inf. Sci., 61 (2018), 100301.  doi: 10.1007/s11432-018-9482-6.

[2]

J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices and Groups, 3$^rd$ edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-6568-7.

[3]

R. CramerV. DazaI. GraciaJ. J. UrrozG. LeanderJ. Marti-Farre and C. Padro, On codes, matroids and secure multiparty computation from linear secret sharing schemes, IEEE Trans. Inform. Theory, 54 (2008), 2644-2657.  doi: 10.1109/TIT.2008.921692.

[4]

S. T. Dougherty, S. Mesnager and P. Sole, Secret-sharing schemes based on self-dual codes, IEEE Information Theory Workshop, (2008), 338–342. doi: 10.1109/ITW.2008.4578681.

[5]

Z. DuC. Li and S. Mesnager, Constructions of self-orthogonal codes from hulls of BCH codes and their parameters, IEEE Trans. Inform. Theory, 66 (2020), 6774-6785.  doi: 10.1109/TIT.2020.2991635.

[6]

W. Fang and F.-W. Fu, New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes, IEEE Trans. Inform. Theory, 65 (2019), 5574-5579.  doi: 10.1109/TIT.2019.2916367.

[7]

W. FangF.-W. FuL. Li and S. Zhu, Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs, IEEE Trans. Inform. Theory, 66 (2020), 3527-3537.  doi: 10.1109/TIT.2019.2950245.

[8]

X. FangK. LebedH. Liu and J. Luo, New MDS self-dual codes over finite fields of odd characteristic, Des. Codes Cryptogr., 88 (2020), 1127-1138.  doi: 10.1007/s10623-020-00734-x.

[9]

X. FangM. Liu and J. Luo, New MDS Euclidean self-orthogonal codes, IEEE Trans. Inform. Theory, 67 (2021), 130-137.  doi: 10.1109/TIT.2020.3020986.

[10]

W. FangS.-T. Xia and F.-W. Fu, Construction of MDS Euclidean self-dual codes via two subsets, IEEE Trans. Inform. Theory, 67 (2021), 5005-5015.  doi: 10.1109/TIT.2021.3085768.

[11]

W. Fang, J. Zhang, S.-T. Xia and F.-W. Fu, A note on self-dual generalized Reed-Solomon codes, preprint, arXiv: 2005.11732 [cs.IT].

[12]

M. Grassl and T. A. Gulliver, On self-dual MDS codes, IEEE Int. Symp. Inform. Theory, (2008), 1954–1957. doi: 10.1109/ISIT.2008.4595330.

[13]

M. Harada and H. Kharaghani, Orthogonal designs, self-dual codes, and the Leech lattice, J. Combin. Des., 13 (2005), 184-194.  doi: 10.1002/jcd.20046.

[14]

M. Harada and H. Kharaghani, Orthogonal designs and MDS self-dual codes, Australas. J. Combin., 35 (2006), 57-67. 

[15]

A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays: Theory and Applications, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-1478-6.

[16] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
[17]

L. Jin and C. Xing, New MDS self-dual codes from generalized Reed-Solomon codes, IEEE Trans. Inform. Theory, 63 (2017), 1434-1438.  doi: 10.1109/TIT.2016.2645759.

[18]

K. LebedH. Liu and J. Luo, Construction of MDS self-dual codes over finite fields, Finite Fields Appl., 59 (2019), 199-207.  doi: 10.1016/j.ffa.2019.05.007.

[19]

R. LiZ. Xu and X. Zhao, On the classification of binary optimal self-orthogonal codes, IEEE Trans. Inform. Theory, 54 (2008), 3778-3782.  doi: 10.1109/TIT.2008.926367.

[20]

G. LuoX. Cao and X. Chen, MDS codes with hulls of arbitrary dimensions and their quantum error correction, IEEE Trans. Inform. Theory, 65 (2019), 2944-2952.  doi: 10.1109/TIT.2018.2874953.

[21]

H. Tong and X. Wang, New MDS Euclidean and Hermitian self-dual codes over finite fields, Adv. in Pure Math., 7 (2017), 325-333.  doi: 10.4236/apm.2017.75019.

[22]

H. Yan, A note on the constructions of MDS self-dual codes, Cryptogr. Commun., 11 (2019), 259-268.  doi: 10.1007/s12095-018-0288-3.

[23]

A. Zhang and K. Feng, A unified approach to construct MDS self-dual codes via Reed-Solomon codes, IEEE Trans. Inform. Theory, 66 (2020), 3650-3656.  doi: 10.1109/TIT.2020.2963975.

[24]

Z. ZhouX. LiC. Tang and C. Ding, Binary LCD codes and self-orthogonal codes from a generic construction, IEEE Trans. Inform. Theory, 65 (2019), 16-27.  doi: 10.1109/TIT.2018.2823704.

show all references

References:
[1]

S. BalajiM. KrishnanM. VajhaV. RamkumarB. Sasidharan and P. Kumar, Erasure coding for distributed storage: An overview, Sci. China Inf. Sci., 61 (2018), 100301.  doi: 10.1007/s11432-018-9482-6.

[2]

J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices and Groups, 3$^rd$ edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-6568-7.

[3]

R. CramerV. DazaI. GraciaJ. J. UrrozG. LeanderJ. Marti-Farre and C. Padro, On codes, matroids and secure multiparty computation from linear secret sharing schemes, IEEE Trans. Inform. Theory, 54 (2008), 2644-2657.  doi: 10.1109/TIT.2008.921692.

[4]

S. T. Dougherty, S. Mesnager and P. Sole, Secret-sharing schemes based on self-dual codes, IEEE Information Theory Workshop, (2008), 338–342. doi: 10.1109/ITW.2008.4578681.

[5]

Z. DuC. Li and S. Mesnager, Constructions of self-orthogonal codes from hulls of BCH codes and their parameters, IEEE Trans. Inform. Theory, 66 (2020), 6774-6785.  doi: 10.1109/TIT.2020.2991635.

[6]

W. Fang and F.-W. Fu, New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes, IEEE Trans. Inform. Theory, 65 (2019), 5574-5579.  doi: 10.1109/TIT.2019.2916367.

[7]

W. FangF.-W. FuL. Li and S. Zhu, Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs, IEEE Trans. Inform. Theory, 66 (2020), 3527-3537.  doi: 10.1109/TIT.2019.2950245.

[8]

X. FangK. LebedH. Liu and J. Luo, New MDS self-dual codes over finite fields of odd characteristic, Des. Codes Cryptogr., 88 (2020), 1127-1138.  doi: 10.1007/s10623-020-00734-x.

[9]

X. FangM. Liu and J. Luo, New MDS Euclidean self-orthogonal codes, IEEE Trans. Inform. Theory, 67 (2021), 130-137.  doi: 10.1109/TIT.2020.3020986.

[10]

W. FangS.-T. Xia and F.-W. Fu, Construction of MDS Euclidean self-dual codes via two subsets, IEEE Trans. Inform. Theory, 67 (2021), 5005-5015.  doi: 10.1109/TIT.2021.3085768.

[11]

W. Fang, J. Zhang, S.-T. Xia and F.-W. Fu, A note on self-dual generalized Reed-Solomon codes, preprint, arXiv: 2005.11732 [cs.IT].

[12]

M. Grassl and T. A. Gulliver, On self-dual MDS codes, IEEE Int. Symp. Inform. Theory, (2008), 1954–1957. doi: 10.1109/ISIT.2008.4595330.

[13]

M. Harada and H. Kharaghani, Orthogonal designs, self-dual codes, and the Leech lattice, J. Combin. Des., 13 (2005), 184-194.  doi: 10.1002/jcd.20046.

[14]

M. Harada and H. Kharaghani, Orthogonal designs and MDS self-dual codes, Australas. J. Combin., 35 (2006), 57-67. 

[15]

A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays: Theory and Applications, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-1478-6.

[16] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
[17]

L. Jin and C. Xing, New MDS self-dual codes from generalized Reed-Solomon codes, IEEE Trans. Inform. Theory, 63 (2017), 1434-1438.  doi: 10.1109/TIT.2016.2645759.

[18]

K. LebedH. Liu and J. Luo, Construction of MDS self-dual codes over finite fields, Finite Fields Appl., 59 (2019), 199-207.  doi: 10.1016/j.ffa.2019.05.007.

[19]

R. LiZ. Xu and X. Zhao, On the classification of binary optimal self-orthogonal codes, IEEE Trans. Inform. Theory, 54 (2008), 3778-3782.  doi: 10.1109/TIT.2008.926367.

[20]

G. LuoX. Cao and X. Chen, MDS codes with hulls of arbitrary dimensions and their quantum error correction, IEEE Trans. Inform. Theory, 65 (2019), 2944-2952.  doi: 10.1109/TIT.2018.2874953.

[21]

H. Tong and X. Wang, New MDS Euclidean and Hermitian self-dual codes over finite fields, Adv. in Pure Math., 7 (2017), 325-333.  doi: 10.4236/apm.2017.75019.

[22]

H. Yan, A note on the constructions of MDS self-dual codes, Cryptogr. Commun., 11 (2019), 259-268.  doi: 10.1007/s12095-018-0288-3.

[23]

A. Zhang and K. Feng, A unified approach to construct MDS self-dual codes via Reed-Solomon codes, IEEE Trans. Inform. Theory, 66 (2020), 3650-3656.  doi: 10.1109/TIT.2020.2963975.

[24]

Z. ZhouX. LiC. Tang and C. Ding, Binary LCD codes and self-orthogonal codes from a generic construction, IEEE Trans. Inform. Theory, 65 (2019), 16-27.  doi: 10.1109/TIT.2018.2823704.

Table 1.  Some known results about MDS self-dual codes with length n
$ q $ $ n $ References
$ q $ even $ n\leq q $ [12]
$ q $ odd $ n=q+1 $ [12], [17]
$ q=r^{2} $ $ n\leq r $ [17]
$ q=r^{2} $, \; $ r\equiv3(mod\;4) $ $ n=2tr $, $ t\leq \frac{r-1}{2} $ [17]
$ q\equiv1(mod\;4) $ $ 4^{n}n^{2}\leq q $ [17]
$ q\equiv3(mod\;4) $ $ n\equiv 0 (mod\;4) $ and $ (n-1)\mid (q-1) $ [21]
$ q\equiv1(mod\;4) $ $ (n-1)\mid (q-1) $ [21]
$ q=p^{m}\equiv1(mod\;4) $ $ n=p^{l}+1 $, $ l\leq m $ [6]
$ q=r^{s} $, $ r $ odd, $ s $ even $ n=2tr^{l} $, $ 0 \leq l\leq s $ and $ 1 \leq t \leq\frac{r-1}{2} $ [6]
$ q=r^{s} $, $ r $ odd, $ s $ even $ n=(2t+1)r^{l}+1 $, $ 0 \leq l\leq s $ and $ 0 \leq t \leq\frac{r-1}{2} $ [6]
$ q $ odd $ (n-2) \mid (q-1) $, $ \eta(2-n)=1 $ [22], [6]
$ q $ odd $ (n-1) \mid (q-1) $, $ \eta(1-n)=1 $ [22]
$ q\equiv1(mod\;4) $ $ n \mid (q-1) $ [22]
$ q=p^{m} $, $ p $ odd $ n=p^{l}+1 $, $ l|m $ [22]
$ q=p^{m} $, $ p $ odd $ n=2p^{l} $, $ l<m $, $ \eta(-1)=1 $ [22]
$ q=r^{s} $, $ r $ odd, $ s\geq2 $ $ n=tr $, $ t $ even and $ 2t \mid (r-1) $ [22]
$ q=r^{s} $, $ r $ odd, $ s\geq2 $ $ n=tr $, $ t $ even, $ (t-1) \mid (r-1) $ and $ \eta(1-t)=1 $ [22]
$ q=r^{s} $, $ r $ odd, $ s\geq2 $ $ n=tr+1 $, $ t $ odd, $ t \mid (r-1) $ and $ \eta(t)=1 $ [22]
$ q=r^{s} $, $ r $ odd, $ s\geq2 $ $ n=tr+1 $, $ t $ odd, $ (t-1) \mid (r-1) $ and $ \eta(t-1)=\eta(-1)=1 $ [22]
$ q=r^{2} $, $ r $ odd $ n=tr $, $ t $ even, $ 1\leq t\leq r $ [22]
$ q=r^{2} $, $ r $ odd $ n=tr+1 $, $ t $ odd, $ 1\leq t\leq r $ [22]
$ q=r^{2} $, $ r $ odd $ n=tm $, $ \frac{q-1}{m} $ even and $ 1 \leq t \leq \frac{r+1}{\gcd(r+1,m)} $ [8]
$ q=r^{2} $, $ r $ odd $ n=tm+1 $, $ tm $ odd, $ m \mid (q-1) $ and $ 2 \leq t \leq \frac{r+1}{2\gcd(r+1,m)} $ [8]
$ q=r^{2} $, $ r $ odd $ n=tm+2 $, $ tm $ even, $ m \mid (q-1) $ (except $ t $, $ m $ are even and $ r\equiv1(mod\;4) $), and $ 1 \leq t \leq \frac{r+1}{\gcd(r+1,m)} $ [8]
$ q=r^{2} $, $ r $ odd $ n=tm $, $ \frac{q-1}{m} $ even, $ 1 \leq t \leq \frac{s(r-1)}{\gcd(s(r-1),m)} $, $ s $ even, $ s \mid m $ and $ \frac{r+1}{s} $ even [8]
$ q=r^{2} $, $ r $ odd $ n=tm+2 $, $ \frac{q-1}{m} $ even, $ \frac{r+1}{s} $ even, $ 1 \leq t \leq \frac{s(r-1)}{\gcd(s(r-1), m)} $, $ s $ even and $ s \mid m $ [8]
$ q=r^{2} $, $ r $ odd $ n=tm $, $ \frac{q-1}{m} $ even, $ 1 \leq t \leq \frac{r-1}{\gcd(r-1,m)} $ [18]
$ q=r^{2} $, $ r $ odd $ n=tm+1 $, $ tm $ odd, $ m \mid (q-1) $, $ 2 \leq t \leq \frac{r-1}{\gcd(r-1,m)} $ [18]
$ q=r^{2} $, $ r $ odd $ n=tm+2 $, $ tm $ even, $ m \mid (q-1) $, $ 2 \leq t \leq \frac{r-1}{\gcd(r-1,m)} $ [18]
$ q=r^{2} $, $ r\equiv1(mod\;4) $ $ n=s(r-1)+t(r+1) $, $ s $ even, $ 1 \leq s \leq \frac{r+1}{2} $ and $ 1 \leq t \leq \frac{r-1}{2} $ [9]
$ q=r^{2} $, $ r\equiv3(mod\;4) $ $ n=s(r-1)+t(r+1) $, $ s $ odd, $ 1 \leq s \leq \frac{r+1}{2} $ and $ 1 \leq t \leq \frac{r-1}{2} $ [9]
$ q $ $ n $ References
$ q $ even $ n\leq q $ [12]
$ q $ odd $ n=q+1 $ [12], [17]
$ q=r^{2} $ $ n\leq r $ [17]
$ q=r^{2} $, \; $ r\equiv3(mod\;4) $ $ n=2tr $, $ t\leq \frac{r-1}{2} $ [17]
$ q\equiv1(mod\;4) $ $ 4^{n}n^{2}\leq q $ [17]
$ q\equiv3(mod\;4) $ $ n\equiv 0 (mod\;4) $ and $ (n-1)\mid (q-1) $ [21]
$ q\equiv1(mod\;4) $ $ (n-1)\mid (q-1) $ [21]
$ q=p^{m}\equiv1(mod\;4) $ $ n=p^{l}+1 $, $ l\leq m $ [6]
$ q=r^{s} $, $ r $ odd, $ s $ even $ n=2tr^{l} $, $ 0 \leq l\leq s $ and $ 1 \leq t \leq\frac{r-1}{2} $ [6]
$ q=r^{s} $, $ r $ odd, $ s $ even $ n=(2t+1)r^{l}+1 $, $ 0 \leq l\leq s $ and $ 0 \leq t \leq\frac{r-1}{2} $ [6]
$ q $ odd $ (n-2) \mid (q-1) $, $ \eta(2-n)=1 $ [22], [6]
$ q $ odd $ (n-1) \mid (q-1) $, $ \eta(1-n)=1 $ [22]
$ q\equiv1(mod\;4) $ $ n \mid (q-1) $ [22]
$ q=p^{m} $, $ p $ odd $ n=p^{l}+1 $, $ l|m $ [22]
$ q=p^{m} $, $ p $ odd $ n=2p^{l} $, $ l<m $, $ \eta(-1)=1 $ [22]
$ q=r^{s} $, $ r $ odd, $ s\geq2 $ $ n=tr $, $ t $ even and $ 2t \mid (r-1) $ [22]
$ q=r^{s} $, $ r $ odd, $ s\geq2 $ $ n=tr $, $ t $ even, $ (t-1) \mid (r-1) $ and $ \eta(1-t)=1 $ [22]
$ q=r^{s} $, $ r $ odd, $ s\geq2 $ $ n=tr+1 $, $ t $ odd, $ t \mid (r-1) $ and $ \eta(t)=1 $ [22]
$ q=r^{s} $, $ r $ odd, $ s\geq2 $ $ n=tr+1 $, $ t $ odd, $ (t-1) \mid (r-1) $ and $ \eta(t-1)=\eta(-1)=1 $ [22]
$ q=r^{2} $, $ r $ odd $ n=tr $, $ t $ even, $ 1\leq t\leq r $ [22]
$ q=r^{2} $, $ r $ odd $ n=tr+1 $, $ t $ odd, $ 1\leq t\leq r $ [22]
$ q=r^{2} $, $ r $ odd $ n=tm $, $ \frac{q-1}{m} $ even and $ 1 \leq t \leq \frac{r+1}{\gcd(r+1,m)} $ [8]
$ q=r^{2} $, $ r $ odd $ n=tm+1 $, $ tm $ odd, $ m \mid (q-1) $ and $ 2 \leq t \leq \frac{r+1}{2\gcd(r+1,m)} $ [8]
$ q=r^{2} $, $ r $ odd $ n=tm+2 $, $ tm $ even, $ m \mid (q-1) $ (except $ t $, $ m $ are even and $ r\equiv1(mod\;4) $), and $ 1 \leq t \leq \frac{r+1}{\gcd(r+1,m)} $ [8]
$ q=r^{2} $, $ r $ odd $ n=tm $, $ \frac{q-1}{m} $ even, $ 1 \leq t \leq \frac{s(r-1)}{\gcd(s(r-1),m)} $, $ s $ even, $ s \mid m $ and $ \frac{r+1}{s} $ even [8]
$ q=r^{2} $, $ r $ odd $ n=tm+2 $, $ \frac{q-1}{m} $ even, $ \frac{r+1}{s} $ even, $ 1 \leq t \leq \frac{s(r-1)}{\gcd(s(r-1), m)} $, $ s $ even and $ s \mid m $ [8]
$ q=r^{2} $, $ r $ odd $ n=tm $, $ \frac{q-1}{m} $ even, $ 1 \leq t \leq \frac{r-1}{\gcd(r-1,m)} $ [18]
$ q=r^{2} $, $ r $ odd $ n=tm+1 $, $ tm $ odd, $ m \mid (q-1) $, $ 2 \leq t \leq \frac{r-1}{\gcd(r-1,m)} $ [18]
$ q=r^{2} $, $ r $ odd $ n=tm+2 $, $ tm $ even, $ m \mid (q-1) $, $ 2 \leq t \leq \frac{r-1}{\gcd(r-1,m)} $ [18]
$ q=r^{2} $, $ r\equiv1(mod\;4) $ $ n=s(r-1)+t(r+1) $, $ s $ even, $ 1 \leq s \leq \frac{r+1}{2} $ and $ 1 \leq t \leq \frac{r-1}{2} $ [9]
$ q=r^{2} $, $ r\equiv3(mod\;4) $ $ n=s(r-1)+t(r+1) $, $ s $ odd, $ 1 \leq s \leq \frac{r+1}{2} $ and $ 1 \leq t \leq \frac{r-1}{2} $ [9]
Table 2.  Proportion of number of possible lengths to $\frac{q}{2}$ ($N$ is the number of possible lengths)
$r$ $q$ $N/(\frac{q}{2}$) of Table 1 (except [9]) $N/(\frac{q}{2})$ of [9] $N/\frac{q}{2}$ of us number of new lengths
149 22201 $11.89\%$ $25\%$ $38.61\%$ 775
151 22801 $13.16\%$ $25\%$ $34.95\%$ 676
157 24649 $10.18\%$ $25\%$ $34.95\%$ 758
163 26569 $10.67\%$ $25\%$ $34.28\%$ 828
167 27889 $13.90\%$ $25\%$ $34.27\%$ 704
$r$ $q$ $N/(\frac{q}{2}$) of Table 1 (except [9]) $N/(\frac{q}{2})$ of [9] $N/\frac{q}{2}$ of us number of new lengths
149 22201 $11.89\%$ $25\%$ $38.61\%$ 775
151 22801 $13.16\%$ $25\%$ $34.95\%$ 676
157 24649 $10.18\%$ $25\%$ $34.95\%$ 758
163 26569 $10.67\%$ $25\%$ $34.28\%$ 828
167 27889 $13.90\%$ $25\%$ $34.27\%$ 704
[1]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[2]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[3]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[4]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[5]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[6]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023

[7]

Keita Ishizuka, Ken Saito. Construction for both self-dual codes and LCD codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2021070

[8]

Ilias S. Kotsireas, Christos Koukouvinos, Dimitris E. Simos. MDS and near-MDS self-dual codes over large prime fields. Advances in Mathematics of Communications, 2009, 3 (4) : 349-361. doi: 10.3934/amc.2009.3.349

[9]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

[10]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[11]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[12]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[13]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[14]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[15]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[16]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[17]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[18]

Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2020, 14 (4) : 677-702. doi: 10.3934/amc.2020037

[19]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[20]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (256)
  • HTML views (156)
  • Cited by (0)

Other articles
by authors

[Back to Top]