doi: 10.3934/amc.2022014
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Self-orthogonal codes from equitable partitions of distance-regular graphs

Department of Mathematics, University of Rijeka, Croatia

* Corresponding author: Dean Crnković

Received  November 2021 Early access March 2022

Fund Project: This work has been fully supported by Croatian Science Foundation under the project 6732

We give two methods for a construction of self-orthogonal linear codes from equitable partitions of distance-regular graphs. By applying these methods, we construct self-orthogonal codes from equitable partitions of the graph of unitals in $ PG(2,4) $ and the only known strongly regular graph with parameters $ (216,40,4,8) $. Some of the codes obtained are optimal.

Citation: Dean Crnković, Sanja Rukavina, Andrea Švob. Self-orthogonal codes from equitable partitions of distance-regular graphs. Advances in Mathematics of Communications, doi: 10.3934/amc.2022014
References:
[1]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system I, The user language, J. Symb. Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.

[2]

A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.

[3]

D. CrnkovićM. MaksimovićB. G. Rodrigues and S. Rukavina, Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.  doi: 10.3934/amc.2016026.

[4]

D. CrnkovićF. Pavese and A. Švob, On the PSU(4, 2)-invariant vertex-transitive strongly regular (216, 40, 4, 8) graph, Graphs Combin., 36 (2020), 503-513.  doi: 10.1007/s00373-020-02132-5.

[5]

D. CrnkovićB. G. RodriguesS. Rukavina and L. Simčić, Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.  doi: 10.3934/amc.2013.7.161.

[6]

D. CrnkovićS. Rukavina and A. Švob, Self-orthogonal codes from equitable partitions of association schemes, J. Algebraic Combin., 55 (2022), 157-171.  doi: 10.1007/s10801-021-01104-z.

[7]

D. CrnkovićS. Rukavina and A. Švob, New strongly regular graphs from orthogonal groups $O^+(6, 2)$ and $O^-(6, 2)$, Discrete Math., 341 (2018), 2723-2728.  doi: 10.1016/j.disc.2018.06.029.

[8]

C. D. Godsil and W. J. Martin, Quotients of association schemes, J. Combin. Theory Ser. A, 69 (1995), 185-199.  doi: 10.1016/0097-3165(95)90050-0.

[9]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Accessed 24 October 2021, http://www.codetables.de.

[10]

A. Hanaki, Elementary functions for association schemes on GAP, 2013, http://math.shinshu-u.ac.jp/$\sim$hanaki/as/gap/association_scheme.pdf

[11]

M. Harada and V. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.  doi: 10.1016/S0012-365X(02)00553-8.

[12] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
[13]

SageMath, the Sage Mathematics Software System (Version 8.2), The Sage Developers, 2018, http://www.sagemath.org

[14]

The GAP Group, GAP – Groups: Algorithms, and Programming, Version 4.8.4; 2016., http://www.gap-system.org

[15]

A. Švob, Transitive distance-regular graphs from linear groups $L(3, q)$, q=2, 3, 4, 5, Trans. Comb., 9 (2020), 49-60. 

show all references

References:
[1]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system I, The user language, J. Symb. Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.

[2]

A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.

[3]

D. CrnkovićM. MaksimovićB. G. Rodrigues and S. Rukavina, Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.  doi: 10.3934/amc.2016026.

[4]

D. CrnkovićF. Pavese and A. Švob, On the PSU(4, 2)-invariant vertex-transitive strongly regular (216, 40, 4, 8) graph, Graphs Combin., 36 (2020), 503-513.  doi: 10.1007/s00373-020-02132-5.

[5]

D. CrnkovićB. G. RodriguesS. Rukavina and L. Simčić, Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.  doi: 10.3934/amc.2013.7.161.

[6]

D. CrnkovićS. Rukavina and A. Švob, Self-orthogonal codes from equitable partitions of association schemes, J. Algebraic Combin., 55 (2022), 157-171.  doi: 10.1007/s10801-021-01104-z.

[7]

D. CrnkovićS. Rukavina and A. Švob, New strongly regular graphs from orthogonal groups $O^+(6, 2)$ and $O^-(6, 2)$, Discrete Math., 341 (2018), 2723-2728.  doi: 10.1016/j.disc.2018.06.029.

[8]

C. D. Godsil and W. J. Martin, Quotients of association schemes, J. Combin. Theory Ser. A, 69 (1995), 185-199.  doi: 10.1016/0097-3165(95)90050-0.

[9]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Accessed 24 October 2021, http://www.codetables.de.

[10]

A. Hanaki, Elementary functions for association schemes on GAP, 2013, http://math.shinshu-u.ac.jp/$\sim$hanaki/as/gap/association_scheme.pdf

[11]

M. Harada and V. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.  doi: 10.1016/S0012-365X(02)00553-8.

[12] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
[13]

SageMath, the Sage Mathematics Software System (Version 8.2), The Sage Developers, 2018, http://www.sagemath.org

[14]

The GAP Group, GAP – Groups: Algorithms, and Programming, Version 4.8.4; 2016., http://www.gap-system.org

[15]

A. Švob, Transitive distance-regular graphs from linear groups $L(3, q)$, q=2, 3, 4, 5, Trans. Comb., 9 (2020), 49-60. 

Table 1.  The coefficients $ p_{i,i}^k $ of adjacency matrices for the graph $ \Gamma_{280} $
$ A_0 $ $ A_1 $ $ A_2 $ $ A_3 $ $ A_4 $
$ A_0 \cdot A_0 $ 1 0 0 0 0
$ A_1 \cdot A_1 $ 9 0 1 0 0
$ A_2 \cdot A_2 $ 72 16 21 15 24
$ A_3 \cdot A_3 $ 144 48 84 68 80
$ A_4 \cdot A_4 $ 54 6 12 9 12
$ A_0 $ $ A_1 $ $ A_2 $ $ A_3 $ $ A_4 $
$ A_0 \cdot A_0 $ 1 0 0 0 0
$ A_1 \cdot A_1 $ 9 0 1 0 0
$ A_2 \cdot A_2 $ 72 16 21 15 24
$ A_3 \cdot A_3 $ 144 48 84 68 80
$ A_4 \cdot A_4 $ 54 6 12 9 12
Table 2.  Self-orthogonal codes from the matrices $ M_i^H $ for $ \Gamma_{280} $
i $ H\leq P \Gamma L(3,4).Z_2 $ orbit lengths code construction
$ 3 $ $ I $ $ 280\times 1 $ $ [280,18,112]_2 $ Cor. 1
$ 3 $ $ Z_3 $ $ 10\times 1,90\times 3 $ $ [100,10,40]_2 $ Cor. 1
$ 3 $ $ Z_3 $ $ 7\times 1,91\times 3 $ $ [98,6,48]_2* $ Cor. 1
$ 3 $ $ Z_3 $ $ 1\times 1,93\times 3 $ $ [94,6,38]_2 $ Cor. 1
$ 3 $ $ Z_5 $ $ 56\times 5 $ $ [56,2,24]_2 $ Cor. 1
$ 3 $ $ E_9 $ $ 1\times 1,9\times 3,28\times 9 $ $ [38,6,16]_2 $ Cor. 1
$ 3 $ $ E_9 $ $ 1\times 1,6\times 3,29\times 9 $ $ [36,2,18]_2 $ Cor. 1
$ 3 $ $ E_9 $ $ 1\times 1,31\times9 $ $ [32,2,16]_2 $ Cor. 1
$ 3 $ $ Z_{15} $ $ 2\times 5,18\times 15 $ $ [20,2,8]_2 $ Cor. 1
$ 3 $ $ E_9:Z_3 $ $ 1\times 1,7\times 9,8\times 27 $ $ [16,2,8]_2 $ Cor. 1
$ 3 $ $ Z_2 $ $ 28\times 1,126\times 2 $ $ [28,6,12]_2* $, $ [126,6,60]_2 $ Thm. 2.5
$ 3 $ $ Z_2 $ $ 10\times 1,135\times 2 $ $ [135,9,56]_2 $ Thm. 2.5
$ 3 $ $ Z_2 $ $ 10\times 1,135\times 2 $ $ [10,6,2]_2 $, $ [135,12,5]_2 $ Thm. 2.5
$ 3 $ $ Z_2 $ $ 8\times 1,136\times 2 $ $ [136,8,56]_2 $ Thm. 2.5
$ 3 $ $ Z_4 $ $ 4\times 1,2\times 2,68\times 4 $, $ 4\times 2,68\times 4 $ $ [68,4,28]_2 $ Thm. 2.5
$ 3 $ $ Z_4 $ $ 6\times 1,1\times 2,68\times 4 $ $ [68,4,32]_2 $ Thm. 2.5
$ 3 $ $ E_4 $ $ 4\times 1,18\times 2,60\times 4 $ $ [18,3,6]_2 $ $ [60,3,30]_2 $ Thm. 2.5
$ 3 $ $ E_4 $ $ 4\times 1,26\times 2,56\times 4 $ $ [26,4,8]_2 $, $ [56,2,32]_2 $ Thm. 2.5
$ 3 $ $ E_4 $ $ 12\times 2,64\times 4 $ $ [64,2,28]_2 $ Thm. 2.5
$ 3 $ $ E_4 $ $ 12\times 2,64\times 4 $ $ [64,2,40]_2 $ Thm. 2.5
$ 3 $ $ E_4 $ $ 2\times 1,11\times 2,64\times 4 $ $ [64,4,30]_2 $ Thm. 2.5
$ 4 $ $ Z_7 $ $ 40\times 7 $ $ [40,12,12]_3 $ Thm. 2.2
$ 4 $ $ Z_3 $ $ 1\times 1,93\times 3 $ $ [93,27,15]_3 $ Thm. 2.5
$ 4 $ $ Z_3 $ $ 7\times 1,91\times 3 $ $ [91,28,18]_3 $ Thm. 2.5
$ 4 $ $ Z_3 $ $ 10\times 1,90\times 3 $ $ [90,25,18]_3 $ Thm. 2.5
$ 4 $ $ E_9 $ $ 1\times 1,31\times 9 $ $ [31,8,6]_3 $ Thm. 2.5
$ 4 $ $ E_9 $ $ 1\times 1,6\times 3,29\times 9 $ $ [29,9,6]_3 $ Thm. 2.5
$ 4 $ $ E_9 $ $ 1\times 1,9\times 3,28\times 9 $ $ [28,7,6]_3 $ Thm. 2.5
i $ H\leq P \Gamma L(3,4).Z_2 $ orbit lengths code construction
$ 3 $ $ I $ $ 280\times 1 $ $ [280,18,112]_2 $ Cor. 1
$ 3 $ $ Z_3 $ $ 10\times 1,90\times 3 $ $ [100,10,40]_2 $ Cor. 1
$ 3 $ $ Z_3 $ $ 7\times 1,91\times 3 $ $ [98,6,48]_2* $ Cor. 1
$ 3 $ $ Z_3 $ $ 1\times 1,93\times 3 $ $ [94,6,38]_2 $ Cor. 1
$ 3 $ $ Z_5 $ $ 56\times 5 $ $ [56,2,24]_2 $ Cor. 1
$ 3 $ $ E_9 $ $ 1\times 1,9\times 3,28\times 9 $ $ [38,6,16]_2 $ Cor. 1
$ 3 $ $ E_9 $ $ 1\times 1,6\times 3,29\times 9 $ $ [36,2,18]_2 $ Cor. 1
$ 3 $ $ E_9 $ $ 1\times 1,31\times9 $ $ [32,2,16]_2 $ Cor. 1
$ 3 $ $ Z_{15} $ $ 2\times 5,18\times 15 $ $ [20,2,8]_2 $ Cor. 1
$ 3 $ $ E_9:Z_3 $ $ 1\times 1,7\times 9,8\times 27 $ $ [16,2,8]_2 $ Cor. 1
$ 3 $ $ Z_2 $ $ 28\times 1,126\times 2 $ $ [28,6,12]_2* $, $ [126,6,60]_2 $ Thm. 2.5
$ 3 $ $ Z_2 $ $ 10\times 1,135\times 2 $ $ [135,9,56]_2 $ Thm. 2.5
$ 3 $ $ Z_2 $ $ 10\times 1,135\times 2 $ $ [10,6,2]_2 $, $ [135,12,5]_2 $ Thm. 2.5
$ 3 $ $ Z_2 $ $ 8\times 1,136\times 2 $ $ [136,8,56]_2 $ Thm. 2.5
$ 3 $ $ Z_4 $ $ 4\times 1,2\times 2,68\times 4 $, $ 4\times 2,68\times 4 $ $ [68,4,28]_2 $ Thm. 2.5
$ 3 $ $ Z_4 $ $ 6\times 1,1\times 2,68\times 4 $ $ [68,4,32]_2 $ Thm. 2.5
$ 3 $ $ E_4 $ $ 4\times 1,18\times 2,60\times 4 $ $ [18,3,6]_2 $ $ [60,3,30]_2 $ Thm. 2.5
$ 3 $ $ E_4 $ $ 4\times 1,26\times 2,56\times 4 $ $ [26,4,8]_2 $, $ [56,2,32]_2 $ Thm. 2.5
$ 3 $ $ E_4 $ $ 12\times 2,64\times 4 $ $ [64,2,28]_2 $ Thm. 2.5
$ 3 $ $ E_4 $ $ 12\times 2,64\times 4 $ $ [64,2,40]_2 $ Thm. 2.5
$ 3 $ $ E_4 $ $ 2\times 1,11\times 2,64\times 4 $ $ [64,4,30]_2 $ Thm. 2.5
$ 4 $ $ Z_7 $ $ 40\times 7 $ $ [40,12,12]_3 $ Thm. 2.2
$ 4 $ $ Z_3 $ $ 1\times 1,93\times 3 $ $ [93,27,15]_3 $ Thm. 2.5
$ 4 $ $ Z_3 $ $ 7\times 1,91\times 3 $ $ [91,28,18]_3 $ Thm. 2.5
$ 4 $ $ Z_3 $ $ 10\times 1,90\times 3 $ $ [90,25,18]_3 $ Thm. 2.5
$ 4 $ $ E_9 $ $ 1\times 1,31\times 9 $ $ [31,8,6]_3 $ Thm. 2.5
$ 4 $ $ E_9 $ $ 1\times 1,6\times 3,29\times 9 $ $ [29,9,6]_3 $ Thm. 2.5
$ 4 $ $ E_9 $ $ 1\times 1,9\times 3,28\times 9 $ $ [28,7,6]_3 $ Thm. 2.5
Table 3.  The coefficients $ p_{i,i}^k $ of adjacency matrices for the graph $ \Gamma_{216} $
$ A_0 $ $ A_1 $ $ A_2 $
$ A_0 \cdot A_0 $ 1 0 0
$ A_1 \cdot A_1 $ 40 4 8
$ A_2 \cdot A_2 $ 175 140 142
$ A_0 $ $ A_1 $ $ A_2 $
$ A_0 \cdot A_0 $ 1 0 0
$ A_1 \cdot A_1 $ 40 4 8
$ A_2 \cdot A_2 $ 175 140 142
Table 4.  Binary self-orthogonal codes from the matrices $ M_1^H $ for the graph $ \Gamma_{216} $, Cor. 1
$ H\leq Aut(\Gamma_{216}) $ orbit lengths code
$ I $ $ 216\times 1 $ $ [ 216,60,32 ] $
$ Z_3 $ $ 72\times 3 $ $ [ 72, 18, 16 ] $
$ Z_3 $ $ 72\times 3 $ $ [ 72, 16, 16 ] $
$ Z_3 $ $ 9\times 1, 69\times 3 $ $ [ 78, 20, 16 ] $
$ Z_5 $ $ 1\times 1, 43\times 5 $ $ [ 44, 12, 8 ] $
$ E_9 $ $ 6\times 3, 22\times 9 $ $ [ 28, 4, 8 ] $
$ E_9 $ $ 9\times 3, 21\times 9 $ $ [ 30, 6, 8 ] $
$ E_9 $ $ 3\times 3, 23\times 9 $ $ [ 26, 4, 8 ] $
$ Z_9 $ $ 24\times 9 $ $ [ 24, 6, 8 ] $
$ H\leq Aut(\Gamma_{216}) $ orbit lengths code
$ I $ $ 216\times 1 $ $ [ 216,60,32 ] $
$ Z_3 $ $ 72\times 3 $ $ [ 72, 18, 16 ] $
$ Z_3 $ $ 72\times 3 $ $ [ 72, 16, 16 ] $
$ Z_3 $ $ 9\times 1, 69\times 3 $ $ [ 78, 20, 16 ] $
$ Z_5 $ $ 1\times 1, 43\times 5 $ $ [ 44, 12, 8 ] $
$ E_9 $ $ 6\times 3, 22\times 9 $ $ [ 28, 4, 8 ] $
$ E_9 $ $ 9\times 3, 21\times 9 $ $ [ 30, 6, 8 ] $
$ E_9 $ $ 3\times 3, 23\times 9 $ $ [ 26, 4, 8 ] $
$ Z_9 $ $ 24\times 9 $ $ [ 24, 6, 8 ] $
Table 5.  Binary self-orthogonal codes from the matrices $ M_1^H $ for the graph $ \Gamma_{216} $, Thm. 2.5
$ H\leq Aut(\Gamma_{216}) $ orbit lengths code
$ Z_2 $ $ 6\times 1,105\times 2 $ $ [ 105, 26, 20 ] $
$ Z_2 $ $ 48 \times 1, 84\times 2 $ $ [ 48, 12, 12 ], [ 84, 24, 16 ] $
$ Z_2 $ $ 12\times 1,102\times 2 $ $ [ 102, 28, 16 ] $
$ Z_2 $ $ 10\times 1,103\times 2 $ $ [ 103, 30, 16 ] $
$ Z_4 $ $ 24\times 2, 42\times 4 $ $ [ 24, 4, 8 ], [ 42, 12, 8 ] $
$ Z_4 $ $ 6\times 2, 51\times 4 $ $ [ 51, 14, 8 ] $
$ E_4 $ $ 18\times 2, 45\times 4 $ $ [ 45, 10, 8 ] $
$ E_4 $ $ 12\times 1, 36\times 2, 33\times 4 $ $ [ 36, 8, 8 ], [ 33, 10, 8 ] $
$ E_4 $ $ 12\times 2, 48\times 4 $ $ [ 48, 12, 12 ] $
$ E_4 $ $ 36\times 2, 36\times 4 $ $ [ 36, 10, 8 ], [ 36, 4, 8 ] $
$ E_4 $ $ 4\times 1, 26\times 2, 40 \times 4 $ $ [ 26, 6, 6 ], [ 40, 10, 12 ] $
$ E_4 $ $ 2\times 1, 15\times 2, 46\times 4 $ $ [ 46, 12, 8 ] $
$ Z_4 $ $ 4\times 1, 4\times 2, 51\times 4 $ $ [ 51, 14, 8 ] $
$ E_4 $ $ 4\times 1, 10\times 2, 48\times 4 $ $ [ 48, 12, 12 ] $
$ Z_4 $ $ 2\times 1, 5\times 2, 51\times 4 $ $ [ 51, 14, 8 ] $
$ E_4 $ $ 2\times 1, 11\times 2, 48\times 4 $ $ [ 48, 12, 12 ] $
$ E_4 $ $ 2\times 1, 13\times 2, 47\times 4 $ $ [ 47, 14, 8 ] $
$ E_4 $ $ 4\times 1, 28\times 2, 39\times 4 $ $ [ 39, 12, 8 ],[ 28, 6, 6 ] $
$ S_3 $ $ 6\times 3, 33\times 6 $ $ [ 33, 4, 12 ] $
$ Z_6 $ $ 16\times 3, 28\times 6 $ $ [ 28, 8, 8 ] $
$ Z_6 $ $ 2\times 3, 35\times 6 $ $ [ 35, 6, 8 ] $
$ S_3 $ $ 10\times 3, 31\times 6 $ $ [ 31, 8, 8 ] $
$ S_3 $ $ 12\times 3, 30\times 6 $ $ [ 30, 6, 8 ] $
$ Z_6 $ $ 16\times 3, 28\times 6 $ $ [ 28, 6, 8 ], [ 16, 4, 8 ] * $
$ S_3 $ $ 10\times 3, 31\times 6 $ $ [ 31, 8, 8 ] $
$ Z_6 $ $ 4\times3, 34\times 6 $ $ [ 34, 8, 8 ] $
$ S_3 $ $ 10\times 3, 31\times 6 $ $ [ 31, 9, 8 ] $
$ Q_8 $ $ 12\times 4, 21\times 8 $ $ [ 21, 4, 8 ] $
$ E_8 $ $ 4\times 2, 24\times 4, 14\times 8 $ $ [ 14, 4, 4 ] $
$ D_8 $ $ 6\times 2, 21\times 4, 15\times 8 $ $ [ 15, 4, 8 ]*, [ 21, 4, 8 ] $
$ E_8 $ $ 18\times 2, 21\times 4, 12\times 8 $ $ [ 12, 4, 4 ] $
$ Z_4\times Z_2 $ $ 18\times 4, 18\times 8 $ $ [ 18, 4, 4 ] $
$ E_8 $ $ 4\times 2, 10\times 4, 21\times 8 $ $ [ 21, 6, 8 ]* $
$ E_8 $ $ 6\times 2, 9\times 4, 21\times 8 $ $ [ 21, 4, 8 ] $
$ Z_4\times Z_2 $ $ 2\times 2, 17\times 4, 18\times 8 $ $ [ 18, 4, 8 ] * $
$ D_8 $ $ 2\times 2, 11\times 4, 21\times 8 $ $ [ 21, 4, 8 ] $
$ E_8 $ $ 8\times 2, 14\times 4, 18\times 8 $ $ [ 18, 4, 8 ] * $
$ Z_4\times Z_2 $ $ 4\times 2, 16\times 4, 18\times 8 $ $ [ 18, 4, 8 ]* $
$ D_8 $ $ 4\times 1, 4\times 2, 21\times 4, 15\times 8 $ $ [ 21, 4, 8 ] $
$ D_8 $ $ 24\times 4, 15\times 8 $ $ [ 15, 4, 4 ] $
$ E_8 $ $ 10\times 2, 13\times 4, 18\times 8 $ $ [ 18, 4, 8 ]* $
$ Z_4\times Z_2 $ $ 2\times 2, 17\times 4, 18\times 8 $ $ [ 18, 4, 4 ] $
$ D_8 $ $ 2\times 2, 9\times 4, 22\times 8 $ $ [ 22, 6, 8 ] $
$ D_8 $ $ 4\times 2, 10\times 4, 21\times 8 $ $ [ 21, 4, 8 ] $
$ D_8 $ $ 2\times 2, 11\times 4, 21\times 8 $ $ [ 21, 6, 8 ]* $
$ Z_8 $ $ 12\times 4, 21\times 8 $ $ [ 21, 6, 4 ] $
$ D_8 $ $ 2\times 1, 5\times 2, 23\times 4, 14\times 8 $ $ [ 23, 4, 8 ] $
$ E_8 $ $ 2\times 1, 9\times 2, 19\times 4, 15\times 8 $ $ [ 19, 4, 4 ] $
$ Z_4\times Z_2 $ $ 2\times 2, 5\times 4, 24\times 8 $ $ [ 24, 6, 8 ] $
$ D_8 $ $ 2\times 2, 13\times 4, 20\times 8 $ $ [ 20, 4, 4 ] $
$ D_8 $ $ 4\times 2, 16\times 4, 18\times 8 $ $ [ 18, 6, 4 ] $
$ Z_6\times Z_2 $ $ 4\times 3, 12\times 6, 11\times 12 $ $ [ 12, 4, 4 ] $
$ Z_{12} $ $ 8\times 6, 14\times 12 $ $ [ 14, 4, 4 ] $
$ D_{12} $ $ 2\times 3, 9\times 6, 13\times 12 $ $ [ 13, 4, 4 ] $
$ Z_{12} $ $ 2\times 6, 17\times 12 $ $ [ 17, 4, 4 ] $
$ Z_3:Z_4 $ $ 2\times 3, 1\times 6, 17\times 12 $ $ [ 17, 4, 4 ] $
$ D_{12} $ $ 4\times 3, 12\times 6, 11\times 12 $ $ [ 11, 4, 4 ] $
$ D_{12} $ $ 4\times 3, 12\times 6, 11\times 12 $ $ [ 11, 3, 4 ] $
$ H\leq Aut(\Gamma_{216}) $ orbit lengths code
$ Z_2 $ $ 6\times 1,105\times 2 $ $ [ 105, 26, 20 ] $
$ Z_2 $ $ 48 \times 1, 84\times 2 $ $ [ 48, 12, 12 ], [ 84, 24, 16 ] $
$ Z_2 $ $ 12\times 1,102\times 2 $ $ [ 102, 28, 16 ] $
$ Z_2 $ $ 10\times 1,103\times 2 $ $ [ 103, 30, 16 ] $
$ Z_4 $ $ 24\times 2, 42\times 4 $ $ [ 24, 4, 8 ], [ 42, 12, 8 ] $
$ Z_4 $ $ 6\times 2, 51\times 4 $ $ [ 51, 14, 8 ] $
$ E_4 $ $ 18\times 2, 45\times 4 $ $ [ 45, 10, 8 ] $
$ E_4 $ $ 12\times 1, 36\times 2, 33\times 4 $ $ [ 36, 8, 8 ], [ 33, 10, 8 ] $
$ E_4 $ $ 12\times 2, 48\times 4 $ $ [ 48, 12, 12 ] $
$ E_4 $ $ 36\times 2, 36\times 4 $ $ [ 36, 10, 8 ], [ 36, 4, 8 ] $
$ E_4 $ $ 4\times 1, 26\times 2, 40 \times 4 $ $ [ 26, 6, 6 ], [ 40, 10, 12 ] $
$ E_4 $ $ 2\times 1, 15\times 2, 46\times 4 $ $ [ 46, 12, 8 ] $
$ Z_4 $ $ 4\times 1, 4\times 2, 51\times 4 $ $ [ 51, 14, 8 ] $
$ E_4 $ $ 4\times 1, 10\times 2, 48\times 4 $ $ [ 48, 12, 12 ] $
$ Z_4 $ $ 2\times 1, 5\times 2, 51\times 4 $ $ [ 51, 14, 8 ] $
$ E_4 $ $ 2\times 1, 11\times 2, 48\times 4 $ $ [ 48, 12, 12 ] $
$ E_4 $ $ 2\times 1, 13\times 2, 47\times 4 $ $ [ 47, 14, 8 ] $
$ E_4 $ $ 4\times 1, 28\times 2, 39\times 4 $ $ [ 39, 12, 8 ],[ 28, 6, 6 ] $
$ S_3 $ $ 6\times 3, 33\times 6 $ $ [ 33, 4, 12 ] $
$ Z_6 $ $ 16\times 3, 28\times 6 $ $ [ 28, 8, 8 ] $
$ Z_6 $ $ 2\times 3, 35\times 6 $ $ [ 35, 6, 8 ] $
$ S_3 $ $ 10\times 3, 31\times 6 $ $ [ 31, 8, 8 ] $
$ S_3 $ $ 12\times 3, 30\times 6 $ $ [ 30, 6, 8 ] $
$ Z_6 $ $ 16\times 3, 28\times 6 $ $ [ 28, 6, 8 ], [ 16, 4, 8 ] * $
$ S_3 $ $ 10\times 3, 31\times 6 $ $ [ 31, 8, 8 ] $
$ Z_6 $ $ 4\times3, 34\times 6 $ $ [ 34, 8, 8 ] $
$ S_3 $ $ 10\times 3, 31\times 6 $ $ [ 31, 9, 8 ] $
$ Q_8 $ $ 12\times 4, 21\times 8 $ $ [ 21, 4, 8 ] $
$ E_8 $ $ 4\times 2, 24\times 4, 14\times 8 $ $ [ 14, 4, 4 ] $
$ D_8 $ $ 6\times 2, 21\times 4, 15\times 8 $ $ [ 15, 4, 8 ]*, [ 21, 4, 8 ] $
$ E_8 $ $ 18\times 2, 21\times 4, 12\times 8 $ $ [ 12, 4, 4 ] $
$ Z_4\times Z_2 $ $ 18\times 4, 18\times 8 $ $ [ 18, 4, 4 ] $
$ E_8 $ $ 4\times 2, 10\times 4, 21\times 8 $ $ [ 21, 6, 8 ]* $
$ E_8 $ $ 6\times 2, 9\times 4, 21\times 8 $ $ [ 21, 4, 8 ] $
$ Z_4\times Z_2 $ $ 2\times 2, 17\times 4, 18\times 8 $ $ [ 18, 4, 8 ] * $
$ D_8 $ $ 2\times 2, 11\times 4, 21\times 8 $ $ [ 21, 4, 8 ] $
$ E_8 $ $ 8\times 2, 14\times 4, 18\times 8 $ $ [ 18, 4, 8 ] * $
$ Z_4\times Z_2 $ $ 4\times 2, 16\times 4, 18\times 8 $ $ [ 18, 4, 8 ]* $
$ D_8 $ $ 4\times 1, 4\times 2, 21\times 4, 15\times 8 $ $ [ 21, 4, 8 ] $
$ D_8 $ $ 24\times 4, 15\times 8 $ $ [ 15, 4, 4 ] $
$ E_8 $ $ 10\times 2, 13\times 4, 18\times 8 $ $ [ 18, 4, 8 ]* $
$ Z_4\times Z_2 $ $ 2\times 2, 17\times 4, 18\times 8 $ $ [ 18, 4, 4 ] $
$ D_8 $ $ 2\times 2, 9\times 4, 22\times 8 $ $ [ 22, 6, 8 ] $
$ D_8 $ $ 4\times 2, 10\times 4, 21\times 8 $ $ [ 21, 4, 8 ] $
$ D_8 $ $ 2\times 2, 11\times 4, 21\times 8 $ $ [ 21, 6, 8 ]* $
$ Z_8 $ $ 12\times 4, 21\times 8 $ $ [ 21, 6, 4 ] $
$ D_8 $ $ 2\times 1, 5\times 2, 23\times 4, 14\times 8 $ $ [ 23, 4, 8 ] $
$ E_8 $ $ 2\times 1, 9\times 2, 19\times 4, 15\times 8 $ $ [ 19, 4, 4 ] $
$ Z_4\times Z_2 $ $ 2\times 2, 5\times 4, 24\times 8 $ $ [ 24, 6, 8 ] $
$ D_8 $ $ 2\times 2, 13\times 4, 20\times 8 $ $ [ 20, 4, 4 ] $
$ D_8 $ $ 4\times 2, 16\times 4, 18\times 8 $ $ [ 18, 6, 4 ] $
$ Z_6\times Z_2 $ $ 4\times 3, 12\times 6, 11\times 12 $ $ [ 12, 4, 4 ] $
$ Z_{12} $ $ 8\times 6, 14\times 12 $ $ [ 14, 4, 4 ] $
$ D_{12} $ $ 2\times 3, 9\times 6, 13\times 12 $ $ [ 13, 4, 4 ] $
$ Z_{12} $ $ 2\times 6, 17\times 12 $ $ [ 17, 4, 4 ] $
$ Z_3:Z_4 $ $ 2\times 3, 1\times 6, 17\times 12 $ $ [ 17, 4, 4 ] $
$ D_{12} $ $ 4\times 3, 12\times 6, 11\times 12 $ $ [ 11, 4, 4 ] $
$ D_{12} $ $ 4\times 3, 12\times 6, 11\times 12 $ $ [ 11, 3, 4 ] $
[1]

Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026

[2]

Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032

[3]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233

[4]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[5]

Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036

[6]

Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499

[7]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[8]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[9]

Xia Li, Feng Cheng, Chunming Tang, Zhengchun Zhou. Some classes of LCD codes and self-orthogonal codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 267-280. doi: 10.3934/amc.2019018

[10]

Annika Meyer. On dual extremal maximal self-orthogonal codes of Type I-IV. Advances in Mathematics of Communications, 2010, 4 (4) : 579-596. doi: 10.3934/amc.2010.4.579

[11]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2022, 16 (3) : 643-665. doi: 10.3934/amc.2020127

[12]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

[13]

Chun-Xiang Guo, Guo Qiang, Jin Mao-Zhu, Zhihan Lv. Dynamic systems based on preference graph and distance. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1139-1154. doi: 10.3934/dcdss.2015.8.1139

[14]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295

[15]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[16]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[17]

Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367

[18]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[19]

Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027

[20]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (238)
  • HTML views (195)
  • Cited by (0)

Other articles
by authors

[Back to Top]