-
Previous Article
Correcting adversarial errors with generalized regenerating codes
- AMC Home
- This Issue
-
Next Article
On Polynomial Modular Number Systems over $ \mathbb{Z}/{p}\mathbb{Z} $
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Self-orthogonal codes from equitable partitions of distance-regular graphs
Department of Mathematics, University of Rijeka, Croatia |
We give two methods for a construction of self-orthogonal linear codes from equitable partitions of distance-regular graphs. By applying these methods, we construct self-orthogonal codes from equitable partitions of the graph of unitals in $ PG(2,4) $ and the only known strongly regular graph with parameters $ (216,40,4,8) $. Some of the codes obtained are optimal.
References:
[1] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system I, The user language, J. Symb. Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[2] |
A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-74341-2. |
[3] |
D. Crnković, M. Maksimović, B. G. Rodrigues and S. Rukavina,
Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.
doi: 10.3934/amc.2016026. |
[4] |
D. Crnković, F. Pavese and A. Švob,
On the PSU(4, 2)-invariant vertex-transitive strongly regular (216, 40, 4, 8) graph, Graphs Combin., 36 (2020), 503-513.
doi: 10.1007/s00373-020-02132-5. |
[5] |
D. Crnković, B. G. Rodrigues, S. Rukavina and L. Simčić,
Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.
doi: 10.3934/amc.2013.7.161. |
[6] |
D. Crnković, S. Rukavina and A. Švob,
Self-orthogonal codes from equitable partitions of association schemes, J. Algebraic Combin., 55 (2022), 157-171.
doi: 10.1007/s10801-021-01104-z. |
[7] |
D. Crnković, S. Rukavina and A. Švob,
New strongly regular graphs from orthogonal groups $O^+(6, 2)$ and $O^-(6, 2)$, Discrete Math., 341 (2018), 2723-2728.
doi: 10.1016/j.disc.2018.06.029. |
[8] |
C. D. Godsil and W. J. Martin,
Quotients of association schemes, J. Combin. Theory Ser. A, 69 (1995), 185-199.
doi: 10.1016/0097-3165(95)90050-0. |
[9] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Accessed 24 October 2021, http://www.codetables.de. |
[10] |
A. Hanaki, Elementary functions for association schemes on GAP, 2013, http://math.shinshu-u.ac.jp/$\sim$hanaki/as/gap/association_scheme.pdf |
[11] |
M. Harada and V. Tonchev,
Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.
doi: 10.1016/S0012-365X(02)00553-8. |
[12] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[13] |
SageMath, the Sage Mathematics Software System (Version 8.2), The Sage Developers, 2018, http://www.sagemath.org |
[14] |
The GAP Group, GAP – Groups: Algorithms, and Programming, Version 4.8.4; 2016., http://www.gap-system.org |
[15] |
A. Švob,
Transitive distance-regular graphs from linear groups $L(3, q)$, q=2, 3, 4, 5, Trans. Comb., 9 (2020), 49-60.
|
show all references
References:
[1] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system I, The user language, J. Symb. Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[2] |
A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-74341-2. |
[3] |
D. Crnković, M. Maksimović, B. G. Rodrigues and S. Rukavina,
Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.
doi: 10.3934/amc.2016026. |
[4] |
D. Crnković, F. Pavese and A. Švob,
On the PSU(4, 2)-invariant vertex-transitive strongly regular (216, 40, 4, 8) graph, Graphs Combin., 36 (2020), 503-513.
doi: 10.1007/s00373-020-02132-5. |
[5] |
D. Crnković, B. G. Rodrigues, S. Rukavina and L. Simčić,
Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.
doi: 10.3934/amc.2013.7.161. |
[6] |
D. Crnković, S. Rukavina and A. Švob,
Self-orthogonal codes from equitable partitions of association schemes, J. Algebraic Combin., 55 (2022), 157-171.
doi: 10.1007/s10801-021-01104-z. |
[7] |
D. Crnković, S. Rukavina and A. Švob,
New strongly regular graphs from orthogonal groups $O^+(6, 2)$ and $O^-(6, 2)$, Discrete Math., 341 (2018), 2723-2728.
doi: 10.1016/j.disc.2018.06.029. |
[8] |
C. D. Godsil and W. J. Martin,
Quotients of association schemes, J. Combin. Theory Ser. A, 69 (1995), 185-199.
doi: 10.1016/0097-3165(95)90050-0. |
[9] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Accessed 24 October 2021, http://www.codetables.de. |
[10] |
A. Hanaki, Elementary functions for association schemes on GAP, 2013, http://math.shinshu-u.ac.jp/$\sim$hanaki/as/gap/association_scheme.pdf |
[11] |
M. Harada and V. Tonchev,
Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.
doi: 10.1016/S0012-365X(02)00553-8. |
[12] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[13] |
SageMath, the Sage Mathematics Software System (Version 8.2), The Sage Developers, 2018, http://www.sagemath.org |
[14] |
The GAP Group, GAP – Groups: Algorithms, and Programming, Version 4.8.4; 2016., http://www.gap-system.org |
[15] |
A. Švob,
Transitive distance-regular graphs from linear groups $L(3, q)$, q=2, 3, 4, 5, Trans. Comb., 9 (2020), 49-60.
|
1 | 0 | 0 | 0 | 0 | |
9 | 0 | 1 | 0 | 0 | |
72 | 16 | 21 | 15 | 24 | |
144 | 48 | 84 | 68 | 80 | |
54 | 6 | 12 | 9 | 12 |
1 | 0 | 0 | 0 | 0 | |
9 | 0 | 1 | 0 | 0 | |
72 | 16 | 21 | 15 | 24 | |
144 | 48 | 84 | 68 | 80 | |
54 | 6 | 12 | 9 | 12 |
i | orbit lengths | code | construction | |
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.2 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 |
i | orbit lengths | code | construction | |
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Cor. 1 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.2 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 | ||||
Thm. 2.5 |
1 | 0 | 0 | |
40 | 4 | 8 | |
175 | 140 | 142 |
1 | 0 | 0 | |
40 | 4 | 8 | |
175 | 140 | 142 |
orbit lengths | code | |
orbit lengths | code | |
orbit lengths | code | |
orbit lengths | code | |
[1] |
Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026 |
[2] |
Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032 |
[3] |
Joaquim Borges, Josep Rifà, Victor A. Zinoviev. Families of nested completely regular codes and distance-regular graphs. Advances in Mathematics of Communications, 2015, 9 (2) : 233-246. doi: 10.3934/amc.2015.9.233 |
[4] |
Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161 |
[5] |
Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036 |
[6] |
Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499 |
[7] |
Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1 |
[8] |
Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437 |
[9] |
Xia Li, Feng Cheng, Chunming Tang, Zhengchun Zhou. Some classes of LCD codes and self-orthogonal codes over finite fields. Advances in Mathematics of Communications, 2019, 13 (2) : 267-280. doi: 10.3934/amc.2019018 |
[10] |
Annika Meyer. On dual extremal maximal self-orthogonal codes of Type I-IV. Advances in Mathematics of Communications, 2010, 4 (4) : 579-596. doi: 10.3934/amc.2010.4.579 |
[11] |
Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2022, 16 (3) : 643-665. doi: 10.3934/amc.2020127 |
[12] |
K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026 |
[13] |
Chun-Xiang Guo, Guo Qiang, Jin Mao-Zhu, Zhihan Lv. Dynamic systems based on preference graph and distance. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1139-1154. doi: 10.3934/dcdss.2015.8.1139 |
[14] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295 |
[15] |
Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261 |
[16] |
Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275 |
[17] |
Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367 |
[18] |
Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65 |
[19] |
Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027 |
[20] |
Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]