doi: 10.3934/amc.2022019
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Three constructions of Golay complementary array sets

School of Mathematics, Southwest Jiaotong University, Chengdu 611756, China

* Corresponding author: Ruibin Ren, Email: Airy_Ren@163.com

Received  October 2021 Revised  February 2022 Early access March 2022

Fund Project: The work was supported in part by the National Science Foundation of China (NSFC) under Grants 62171389 and 12102369

Recently, two-dimensional (2-D) arrays with good correlation have been used in MIMO systems. In this paper, we investigate new 2-D Golay complementary array sets (GCASs), whose 2-D aperiodic auto-correlation sums are zero for all 2-D nonzero shifts. Firstly, based on the 2-D generalized Boolean functions, we propose a direct construction of new GCASs. Secondly, using horizontal concatenation, we give two indirect constructions of GCASs. The proposed constructions can provide a lot of GCASs with flexible parameters.

Citation: Bingsheng Shen, Yang Yang, Ruibin Ren. Three constructions of Golay complementary array sets. Advances in Mathematics of Communications, doi: 10.3934/amc.2022019
References:
[1]

M. J. E. Golay, Multislit spectrometry, J. Opt. Sot. Amer., 39 (1949), 437-444. 

[2]

M. J. E. Golay, Complementary series, IRE Trans. Inf. Theory, 7 (1961), 82-87.  doi: 10.1109/tit.1961.1057620.

[3]

R. CraigenW. Holzmann and H. Kharaghani, Complex Golay sequences: Structure and applications, Discrete Math., 252 (2002), 73-89.  doi: 10.1016/S0012-365X(01)00162-5.

[4]

C. C. Tseng and C. L. Liu, Complementary sets of sequences, IEEE Trans. Inf. Theory, 18 (1972), 644-652.  doi: 10.1109/tit.1972.1054860.

[5]

P. Spasojević and C. N. Georghiades, Complementary sequences for ISI channel estimation, IEEE Trans. Inf. Theory, 47 (2001), 1145-1152.  doi: 10.1109/18.915670.

[6]

J. M. Groenewald and B. T. Maharaj, MIMO channel synchronization using Golay complementary pairs, AFRICON 2007, Windhoek, (2007), 1–5. doi: 10.1109/AFRCON.2007.4401609.

[7]

A. PezeshkiA. R. CalderbankW. Moran and S. D. Howard, Doppler resilient Golay complementary waveforms, IEEE Trans. Inf. Theory, 54 (2008), 4254-4266.  doi: 10.1109/TIT.2008.928292.

[8]

J. TangN. ZhangZ. Ma and B. Tang, Construction of doppler resilient complete complementary code in MIMO radar, IEEE Trans. Signal Process., 62 (2014), 4704-4712.  doi: 10.1109/TSP.2014.2337272.

[9]

J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inf. Theory, 45 (1999), 2397-2417.  doi: 10.1109/18.796380.

[10]

K. G. Paterson, Generalized Reed-Muller codes and power control in OFDM modulation, IEEE Trans. Inf. Theory, 46 (2000), 104-120.  doi: 10.1109/18.817512.

[11]

Y. ZhouY. YangZ. ZhouS. AnandS. Hu and Y. Guan, New complementary sets with low PAPR property under spectral null constraints, IEEE Trans. Inf. Theory, 66 (2020), 7022-7032.  doi: 10.1109/TIT.2020.3024984.

[12]

M. Dymond, Barker Arrays: Existence, Generalization and Alternatives, Ph.D thesis, University of London, 1992.

[13]

S. Matsufuji, R. Shigemitsu, Y. Tanada and N. Kuroyanagi, Construction of complementary arrays, Joint IST Workshop on Mobile Future and Symp. on Trends in Commun., Bratislava, (2004), 78–81. doi: 10.1109/TIC.2004.1409503.

[14]

J. Jedwab and M. G. Parker, Golay complementary array pairs, Designs, Codes and Cryptography, 44 (2007), 209-216.  doi: 10.1007/s10623-007-9088-z.

[15]

F. FiedlerJ. Jedwab and M. G. Parker, A multi-dimensional approach for the construction and enumeration of Golay complementary sequences, J. Combinatorial Theory (Series A), 115 (2008), 753-776.  doi: 10.1016/j.jcta.2007.10.001.

[16]

F. Zeng and Z. Zhang, Two dimensional periodic complementary array sets, IEEE Int. Conf. on Wireless Commun., Netw. and Mobile Comput., Bratislava, Chengdu, (2010), 1–4. doi: 10.1109/WICOM.2010.5600944.

[17]

F. LiY. JiangC. Du and X. Wang, Construction of Golay complementary matrices and its applications to MIMO omnidirectional transmission, IEEE Trans. Signal Process., 69 (2021), 2100-2113.  doi: 10.1109/TSP.2021.3067467.

[18]

A. LuX. Gao and X. Meng, Omnidirectional precoding for 3D massive MIMO with uniform planar arrays, IEEE Trans. Wireless Commun., 19 (2020), 2628-2642.  doi: 10.1109/TWC.2020.2966973.

[19]

S. W. Golomb and H. Taylor, Two-dimensional synchronization patterns for minimum ambiguity, IEEE Trans. Inf. Theory, 28 (1982), 600-604.  doi: 10.1109/TIT.1982.1056526.

[20]

M. Turcsány and P. Farkaš, New 2D-MC-DS-SS-CDMA techniques based on two-dimensional orthogonal complete complementary codes, Multi-Carrier Spread-Spectrum, Dordrecht, (2004), 49–56.

[21]

P. Farkaš and M. Turcsány, Two-dimensional orthogonal complete complementary codes, Joint IST Workshop on Mobile Future and Symp. on Trends in Commun., Bratislava, (2003), 1–5.

[22]

C. Pai and C. Chen, Constructions of two-dimensional Golay complementary array pairs based on generalized Boolean functions, IEEE Int. Symp. Inf. Theory, Los Angeles, (2020), 2931–2935.

[23]

C. Pai and C. Chen, Two-dimensional Golay complementary array sets from generalized Boolean functions, preprint, arXiv: 2102.04043.

[24]

C.-Y. Chen, Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in OFDM, IEEE Trans. Inf. Theory, 62 (2016), 7538-7545.  doi: 10.1109/TIT.2016.2613994.

[25]

B. ShenY. YangY. Feng and Z. Zhou, A generalized construction of mutually orthogonal complementary sequence sets with non-power-of-two lengths, IEEE Trans. Commun., 69 (2021), 4247-4253. 

show all references

References:
[1]

M. J. E. Golay, Multislit spectrometry, J. Opt. Sot. Amer., 39 (1949), 437-444. 

[2]

M. J. E. Golay, Complementary series, IRE Trans. Inf. Theory, 7 (1961), 82-87.  doi: 10.1109/tit.1961.1057620.

[3]

R. CraigenW. Holzmann and H. Kharaghani, Complex Golay sequences: Structure and applications, Discrete Math., 252 (2002), 73-89.  doi: 10.1016/S0012-365X(01)00162-5.

[4]

C. C. Tseng and C. L. Liu, Complementary sets of sequences, IEEE Trans. Inf. Theory, 18 (1972), 644-652.  doi: 10.1109/tit.1972.1054860.

[5]

P. Spasojević and C. N. Georghiades, Complementary sequences for ISI channel estimation, IEEE Trans. Inf. Theory, 47 (2001), 1145-1152.  doi: 10.1109/18.915670.

[6]

J. M. Groenewald and B. T. Maharaj, MIMO channel synchronization using Golay complementary pairs, AFRICON 2007, Windhoek, (2007), 1–5. doi: 10.1109/AFRCON.2007.4401609.

[7]

A. PezeshkiA. R. CalderbankW. Moran and S. D. Howard, Doppler resilient Golay complementary waveforms, IEEE Trans. Inf. Theory, 54 (2008), 4254-4266.  doi: 10.1109/TIT.2008.928292.

[8]

J. TangN. ZhangZ. Ma and B. Tang, Construction of doppler resilient complete complementary code in MIMO radar, IEEE Trans. Signal Process., 62 (2014), 4704-4712.  doi: 10.1109/TSP.2014.2337272.

[9]

J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inf. Theory, 45 (1999), 2397-2417.  doi: 10.1109/18.796380.

[10]

K. G. Paterson, Generalized Reed-Muller codes and power control in OFDM modulation, IEEE Trans. Inf. Theory, 46 (2000), 104-120.  doi: 10.1109/18.817512.

[11]

Y. ZhouY. YangZ. ZhouS. AnandS. Hu and Y. Guan, New complementary sets with low PAPR property under spectral null constraints, IEEE Trans. Inf. Theory, 66 (2020), 7022-7032.  doi: 10.1109/TIT.2020.3024984.

[12]

M. Dymond, Barker Arrays: Existence, Generalization and Alternatives, Ph.D thesis, University of London, 1992.

[13]

S. Matsufuji, R. Shigemitsu, Y. Tanada and N. Kuroyanagi, Construction of complementary arrays, Joint IST Workshop on Mobile Future and Symp. on Trends in Commun., Bratislava, (2004), 78–81. doi: 10.1109/TIC.2004.1409503.

[14]

J. Jedwab and M. G. Parker, Golay complementary array pairs, Designs, Codes and Cryptography, 44 (2007), 209-216.  doi: 10.1007/s10623-007-9088-z.

[15]

F. FiedlerJ. Jedwab and M. G. Parker, A multi-dimensional approach for the construction and enumeration of Golay complementary sequences, J. Combinatorial Theory (Series A), 115 (2008), 753-776.  doi: 10.1016/j.jcta.2007.10.001.

[16]

F. Zeng and Z. Zhang, Two dimensional periodic complementary array sets, IEEE Int. Conf. on Wireless Commun., Netw. and Mobile Comput., Bratislava, Chengdu, (2010), 1–4. doi: 10.1109/WICOM.2010.5600944.

[17]

F. LiY. JiangC. Du and X. Wang, Construction of Golay complementary matrices and its applications to MIMO omnidirectional transmission, IEEE Trans. Signal Process., 69 (2021), 2100-2113.  doi: 10.1109/TSP.2021.3067467.

[18]

A. LuX. Gao and X. Meng, Omnidirectional precoding for 3D massive MIMO with uniform planar arrays, IEEE Trans. Wireless Commun., 19 (2020), 2628-2642.  doi: 10.1109/TWC.2020.2966973.

[19]

S. W. Golomb and H. Taylor, Two-dimensional synchronization patterns for minimum ambiguity, IEEE Trans. Inf. Theory, 28 (1982), 600-604.  doi: 10.1109/TIT.1982.1056526.

[20]

M. Turcsány and P. Farkaš, New 2D-MC-DS-SS-CDMA techniques based on two-dimensional orthogonal complete complementary codes, Multi-Carrier Spread-Spectrum, Dordrecht, (2004), 49–56.

[21]

P. Farkaš and M. Turcsány, Two-dimensional orthogonal complete complementary codes, Joint IST Workshop on Mobile Future and Symp. on Trends in Commun., Bratislava, (2003), 1–5.

[22]

C. Pai and C. Chen, Constructions of two-dimensional Golay complementary array pairs based on generalized Boolean functions, IEEE Int. Symp. Inf. Theory, Los Angeles, (2020), 2931–2935.

[23]

C. Pai and C. Chen, Two-dimensional Golay complementary array sets from generalized Boolean functions, preprint, arXiv: 2102.04043.

[24]

C.-Y. Chen, Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in OFDM, IEEE Trans. Inf. Theory, 62 (2016), 7538-7545.  doi: 10.1109/TIT.2016.2613994.

[25]

B. ShenY. YangY. Feng and Z. Zhou, A generalized construction of mutually orthogonal complementary sequence sets with non-power-of-two lengths, IEEE Trans. Commun., 69 (2021), 4247-4253. 

Table 1.  COMPARISONS OF 2-D GCASs
Ref. Parameters Method
[17] $ (N,L,M) $ 1-D $ (M,N,L) $-CCCs
$ (4,M,N) $ two GCPs of length $ M, N $, respectively
$ (N_1N_2,L,M) $ 1-D $ (N_1,L_1) $-GCSs and 1-D $ (N_2,L_2) $-GCSs
[18] $ (N,L_1,L_2) $ $ (N,L_1) $-GCSs and GCPs of length $ L_2 $
[21] $ (MK,M^2,K^2) $ 1-D $ (M,M,M^2) $-CCCs and 1-D $ (N,N,N^2) $-CCCs
[23] $ (2^k,2^n,2^m) $ 2-D generalized Boolean functions
Theorem 1 $ (4,2^n,2^{m-1}+2^v) $ 2-D generalized Boolean functions
Theorem 2 $ (2K,M,L_1+L_2) $ 2-D $ (K,M,L_1) $-GCASs and 2-D $ (K,M,L_2) $-GCASs
Remark 4 $ (2^k,2^n,\sum_{s=1}^{k}2^s) $ Theorem 1 and Theorem 2
Theorem 3 $ (KP,M,L_1L_2) $ 2-D $ (K,M,L_1) $-GCASs and $ (P,L_2) $-ESCSs
Ref. Parameters Method
[17] $ (N,L,M) $ 1-D $ (M,N,L) $-CCCs
$ (4,M,N) $ two GCPs of length $ M, N $, respectively
$ (N_1N_2,L,M) $ 1-D $ (N_1,L_1) $-GCSs and 1-D $ (N_2,L_2) $-GCSs
[18] $ (N,L_1,L_2) $ $ (N,L_1) $-GCSs and GCPs of length $ L_2 $
[21] $ (MK,M^2,K^2) $ 1-D $ (M,M,M^2) $-CCCs and 1-D $ (N,N,N^2) $-CCCs
[23] $ (2^k,2^n,2^m) $ 2-D generalized Boolean functions
Theorem 1 $ (4,2^n,2^{m-1}+2^v) $ 2-D generalized Boolean functions
Theorem 2 $ (2K,M,L_1+L_2) $ 2-D $ (K,M,L_1) $-GCASs and 2-D $ (K,M,L_2) $-GCASs
Remark 4 $ (2^k,2^n,\sum_{s=1}^{k}2^s) $ Theorem 1 and Theorem 2
Theorem 3 $ (KP,M,L_1L_2) $ 2-D $ (K,M,L_1) $-GCASs and $ (P,L_2) $-ESCSs
[1]

Yang Yang, Xiaohu Tang, Guang Gong. Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 113-125. doi: 10.3934/amc.2013.7.113

[2]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[3]

Constanza Riera, Pantelimon Stănică. Landscape Boolean functions. Advances in Mathematics of Communications, 2019, 13 (4) : 613-627. doi: 10.3934/amc.2019038

[4]

Claude Carlet, Khoongming Khoo, Chu-Wee Lim, Chuan-Wen Loe. On an improved correlation analysis of stream ciphers using multi-output Boolean functions and the related generalized notion of nonlinearity. Advances in Mathematics of Communications, 2008, 2 (2) : 201-221. doi: 10.3934/amc.2008.2.201

[5]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2022, 16 (3) : 485-501. doi: 10.3934/amc.2020121

[6]

Sihem Mesnager, Gérard Cohen. Fast algebraic immunity of Boolean functions. Advances in Mathematics of Communications, 2017, 11 (2) : 373-377. doi: 10.3934/amc.2017031

[7]

Claude Carlet, Serge Feukoua. Three basic questions on Boolean functions. Advances in Mathematics of Communications, 2017, 11 (4) : 837-855. doi: 10.3934/amc.2017061

[8]

Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069

[9]

Claude Carlet. Parameterization of Boolean functions by vectorial functions and associated constructions. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022013

[10]

Finley Freibert. The classification of complementary information set codes of lengths $14$ and $16$. Advances in Mathematics of Communications, 2013, 7 (3) : 267-278. doi: 10.3934/amc.2013.7.267

[11]

Jian Liu, Sihem Mesnager, Lusheng Chen. Variation on correlation immune Boolean and vectorial functions. Advances in Mathematics of Communications, 2016, 10 (4) : 895-919. doi: 10.3934/amc.2016048

[12]

Rui Zhang, Sihong Su. A new construction of weightwise perfectly balanced Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021020

[13]

Sanmei Zhu, Jun-e Feng, Jianli Zhao. State feedback for set stabilization of Markovian jump Boolean control networks. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1591-1605. doi: 10.3934/dcdss.2020413

[14]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[15]

Claude Carlet, Serge Feukoua. Three parameters of Boolean functions related to their constancy on affine spaces. Advances in Mathematics of Communications, 2020, 14 (4) : 651-676. doi: 10.3934/amc.2020036

[16]

Yu Zhou. On the distribution of auto-correlation value of balanced Boolean functions. Advances in Mathematics of Communications, 2013, 7 (3) : 335-347. doi: 10.3934/amc.2013.7.335

[17]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[18]

Thomas W. Cusick, Younhwan Cheon. The weight recursions for the 2-rotation symmetric quartic Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021011

[19]

Tingting Pang, Nian Li, Li Zhang, Xiangyong Zeng. Several new classes of (balanced) Boolean functions with few Walsh transform values. Advances in Mathematics of Communications, 2021, 15 (4) : 757-775. doi: 10.3934/amc.2020095

[20]

Suman Dutta, Subhamoy Maitra, Chandra Sekhar Mukherjee. Following Forrelation – quantum algorithms in exploring Boolean functions' spectra. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2021067

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (172)
  • HTML views (120)
  • Cited by (0)

Other articles
by authors

[Back to Top]