Article Contents
Article Contents

# Optimal binary linear codes from posets of the disjoint union of two chains

• *Corresponding author: Yansheng Wu

This work was supported by the National Natural Science Foundation of China (Nos. 12101326, 62172219), the Natural Science Foundation of Jiangsu Province (No. BK20210575), the Natural Science Research Project of Colleges and Universities in Jiangsu Province (No. 21KJB110005), the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)(NRF-2017R1D1A1B05030707), and the Foundation of State Key Laboratory of Integrated Services Networks under Grant ISN23-22

• Recently, some infinite families of optimal binary linear codes are constructed from simplicial complexes. Afterwards, the construction method was extended to using arbitrary posets. In this paper, based on a generic construction of linear codes, we obtain four classes of optimal binary linear codes by using the posets of two chains. Two of them induce Griesmer codes which are not equivalent to the linear codes constructed by Belov. Those codes are exploited to construct secret sharing schemes in cryptography as well.

Mathematics Subject Classification: Primary: 94B05.

 Citation:

• Figure 1.  $\mathbb{P} = ([m,n], \leq)$

Table 1.  Theorem 3.1 (Ⅰ)

 Weight Frequency $2^{n-1}-i+s(0\le s< i)$ $2^{n-i}{i\choose s}$ $2^{n-1}$ $2^{n-i}-1$

Table 2.  Theorem 3.1 (Ⅱ)

 Weight Frequency $2^{n-1}-(j-m)+t(0\le t< j-m)$ $2^{n-(j-m)}{j-m\choose t}$ $2^{n-1}$ $2^{n-(j-m)}-1$

Table 3.  Theorem 3.1 (Ⅲ)

 Weight Frequency $\begin{array}{*{20}{c}} {{2^{n - 1}} + s + t + 2st - (s + 1)(j - m) - (t + 1)i}\\ {0 \le s \le i,0 \le t \le j - m,}\\ {(s,t) \ne (i,j - m)} \end{array}$ $2^{n-i-(j-m)}{i\choose s}{j-m\choose t}$ $2^{n-1}$ $2^{n-i-(j-m)}-1$
•  [1] A. R. Anderson, C. Ding, T. Helleseth and T. Kløve, How to build robust shared control systems, Des. Codes Cryptogr., 15 (1998), 111-124.  doi: 10.1023/A:1026421315292. [2] A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.  doi: 10.1109/18.705584. [3] D. Bartoli and M. Bonini, Minimal Linear codes in odd characteristic, IEEE Trans. Inf. Theory, 65 (2019), 4152-4155.  doi: 10.1109/TIT.2019.2891992. [4] B. I. Belov, A conjecture on the griesmer bound, optimimization methods and their applications, Optimization Methods and Their Applications, Sibirsk. Énerget. Inst. Sibirsk. Otdel. Akad. Nauk SSSR, Irkutsk, 182 (1974), 100-106. [5] B. I. Belov, V. N. Logačhev and V. P. Sandimirov, Construction of a class of linear binary codes achieving the Varšhamov-Griesmer bound, Problemy Peredači Informacii, 10 (1974), 36-44. [6] C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inf. Theory, 51 (2005), 2089-2102.  doi: 10.1109/TIT.2005.847722. [7] C. Ding, Linear codes from some 2-designs, IEEE Trans. Inf. Theory, 61 (2015), 3265-3275.  doi: 10.1109/TIT.2015.2420118. [8] C. Ding, Z. Heng and Z. Zhou, Minimal binary linear codes, IEEE Trans. Inf. Theory, 64 (2018), 6536-6545.  doi: 10.1109/TIT.2018.2819196. [9] M. Grassl, Bounds on the Minimum Distance of Linear Codes, 2021, Available from: http://www.codetables.de. [10] J. H. Griesmer, A bound for error correcting codes, IBM J. Res. Dev., 4 (1960), 532-542.  doi: 10.1147/rd.45.0532. [11] W. C. Huffman and  V. Pless,  Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077. [12] J. Y. Hyun, H. K. Kim, Y. Wu and Q. Yue, Optimal minimal linear codes from posets, Des. Codes Cryptogr., 88 (2020), 2475-2492.  doi: 10.1007/s10623-020-00793-0. [13] Z. Heng and Q. Yue, A class of binary linear codes with at most three weights, IEEE Commun. Lett., 19 (2015), 1488-1491.  doi: 10.1109/LCOMM.2015.2455032. [14] Z. Heng and Q. Yue, Two classes of two-weight linear codes, Finite Fields Appl., 38 (2016), 72-92.  doi: 10.1016/j.ffa.2015.12.002. [15] Z. Heng and Q. Yue, Evaluation of the Hamming weights of a class of linear codes based on Gauss sums, Des. Codes Cryptogr., 83 (2017), 307-326.  doi: 10.1007/s10623-016-0222-7. [16] C. Li, Q. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.  doi: 10.1016/j.ffa.2014.01.009. [17] Y. Liu and Z. Liu, On some classes of codes with a few weights, Adv. Math. Commun., 12 (2018), 415-428.  doi: 10.3934/amc.2018025. [18] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. [19] J. Neggers and H. S. Kim, Basic Posets, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/3890. [20] C. Tang, Y. Qiu, Q. Liao and Z. Zhou, Full characterization of minimal linear codes as cutting blocking sets, IEEE Trans. Inf. Theory, 67 (2021), 3690-3700.  doi: 10.1109/TIT.2021.3070377. [21] S. Yang, X. Kong and C. Tang, A construction of linear codes and their complete weight enumerators, Finite Fields Appl., 48 (2017), 196-226.  doi: 10.1016/j.ffa.2017.08.001. [22] J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.  doi: 10.1109/TIT.2005.860412. [23] Z. Zhou, C. Tang, X. Li and C. Ding, Binary LCD codes and self-orthogonal codes from a generic construction, IEEE Trans. Inf. Theory, 65 (2019), 16-27.  doi: 10.1109/TIT.2018.2823704. [24] W. Zhang, H. Yan and H. Wei, Four families of minimal binary linear codes with $w_{min}/w_{max}\leq 1/2$, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 175-184.  doi: 10.1007/s00200-018-0367-x.

Figures(1)

Tables(3)