[1]
|
C. -C. Chang and Chih-Jen}, libsvm dataset url: http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary/news20.binary.bz2, 2015.
|
[2]
|
J. Choi, J.J. Dongarra, R. Pozo and D.W. Walker, ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers, in Frontiers of Massively Parallel Computation, 1992., Fourth Symposium on the, IEEE, (1992), 120-127.
|
[3]
|
Chu, Cheng-Tao and Kim, Sang Kyun and Lin, Yi-An and Yu, YuanYuan and Bradski, Gary and Ng, Andrew Y and Olukotun, Kunle,
{Map-Reduce for Machine Learning on Multicore}, in Neural Information Processing Systems, 2007.
|
[4]
|
M.T. Chu and J.L. Watterson, On a multivariate eigenvalue problem, Part I: Algebraic theory and a power method, SIAM Journal on Scientific Computing, 14 (1993), 1089-1106.
doi: 10.1137/0914066.
|
[5]
|
T. H. Cormen,
Introduction to Algorithms, MIT press, 2009.
|
[6]
|
J. Dean and S. Ghemawat, MapReduce: simplified data processing on large clusters, Communications of the ACM, 51 (2008), 107-113.
doi: 10.1145/1327452.1327492.
|
[7]
|
J. Ekanayake, H. Li and B. Zhang, Twister: A runtime for iterative MapReduce, HPDC '10 Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, (2010), 810-818.
doi: 10.1145/1851476.1851593.
|
[8]
|
J. Gonzalez, Y. Low, H. Gu, D. Bickson and C. Guestrin, PowerGraph: Distributed graph-parallel computation on natural graphs, OSDI'12 Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation, (2012), 17-30.
|
[9]
|
P. Harrington,
Machine Learning in Action, Manning Publications, 2012.
|
[10]
|
P. Hintjens,
ZeroMQ: Messaging for Many Applications, O'Reilly Media, Inc. , 2013.
|
[11]
|
Intel, Threading Building Blocks url: https://www.threadingbuildingblocks.org/, 2009.
|
[12]
|
M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly, Dryad: distributed data-parallel programs from sequential building blocks, ACM SIGOPS Operating Systems Review, 41 (2007), 59-72.
doi: 10.1145/1272996.1273005.
|
[13]
|
Join (SQL) url: https://en.wikipedia.org/wiki/Join, 2015.
|
[14]
|
J. Kepner and J. Gilbert,
Graph Algorithms in the Language of Linear Algebra, SIAM, 2011.
|
[15]
|
K. Kourtis, V. Karakasis, G. Goumas and N. Koziris, CSX: An extended compression format for spmv on shared memory systems, in ACM SIGPLAN Notices, 46 (2011), 247-256.
doi: 10.1145/1941553.1941587.
|
[16]
|
J. Kowalik, ACTORS: A model of concurrent computation in distributed systems (Gul Agha), SIAM Review, 30 (1988), 146-146.
doi: 10.1137/1030027.
|
[17]
|
C.G. Aapo Kyrola and G. Blelloch, GraphChi: Large-scale graph computation on just a PC, in Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation, USENIX Association, (2012), 31-46.
|
[18]
|
Y. Low, J. Gonzalez and A. Kyrola, Graphlab: A distributed framework for machine learning in the cloud, arXiv preprint, arXiv: 1107. 0922, 1107 (2011).
|
[19]
|
Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin and J.M. Hellerstein, Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud, Proceedings of the VLDB Endowment, 5 (2012), 716-727.
doi: 10.14778/2212351.2212354.
|
[20]
|
G. Malewicz, M. Austern and A. Bik, Pregel: A system for large-scale graph processing, Proceedings of the the 2010 international conference on Management of data, 114 (2010), 135-145.
|
[21]
|
D. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham and M. Abadi, Naiad: A timely dataflow system, SOSP '13: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, (2013), 439-455.
doi: 10.1145/2517349.2522738.
|
[22]
|
E.J. O'Neil, P.E. O'Neil and G. Weikum, The LRU-K page replacement algorithm for database disk buffering, in ACM SIGMOD Record, 22 (1993), 297-306.
|
[23]
|
T. W. L Page, S Brin, R Motwani,
The PageRank Citation Ranking: Bringing Order to the Web, tech. rep. , Stanford InfoLab, 1999.
|
[24]
|
R. Power and J. Li, {Piccolo: Building fast, distributed programs with partitioned tables, Proceedings of the 9th USENIX conference on Operating systems design and implementation -OSDI'10, (2010), 1-14.
|
[25]
|
J. Protic, M. Tomasevic and V. Milutinović,
Distributed Shared Memory: Concepts and Systems, John Wiley & Sons, 1998.
|
[26]
|
Z. Qian, X. Chen, N. Kang and M. Chen, MadLINQ: large-scale distributed matrix computation for the cloud, Proceedings of the 7th ACM european conference on Computer Systems. ACM, (2012), 197-210,.
doi: 10.1145/2168836.2168857.
|
[27]
|
RocksDB,
http://rocksdb.org/, 2015.
|
[28]
|
A. Roy, I. Mihailovic and W. Zwaenepoel, X-stream: edge-centric graph processing using streaming partitions, the Twenty-Fourth ACM Symposium on Operating Systems Principles, (2013), 472-488.
doi: 10.1145/2517349.2522740.
|
[29]
|
S. Seo, E.J. Yoon, J. Kim, S. Jin, J.-S. Kim and S. Maeng, HAMA: An efficient matrix computation with the mapreduce framework, in 2010 IEEE Second International Conference on Cloud Computing Technology and Science, (2010), 721-726.
doi: 10.1109/CloudCom.2010.17.
|
[30]
|
J. Shun and G. Blelloch, Ligra: A lightweight graph processing framework for shared memory, in PPoPP, (2013), 135-146.
doi: 10.1145/2442516.2442530.
|
[31]
|
M. S. Snir, S. W. Otto, D. W. Walker, J. Dongarra and Huss-Lederman,
MPI: The Complete Reference, MIT Press, 1995.
|
[32]
|
L. Valiant, A bridging model for parallel computation, Communications of the ACM, 33 (1990), 103-111.
doi: 10.1145/79173.79181.
|
[33]
|
P. Vassiliadis, A survey of extract-transform-load technology, International Journal of Data Warehousing and Mining, 5 (), 1-27.
doi: 10.4018/978-1-60960-537-7.ch008.
|
[34]
|
S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S. Schreiber, Presto in Proceedings of the 8th ACM European Conference on Computer Systems -EuroSys '13, (2013), p197.
|
[35]
|
R. S. Xin, J. E. Gonzalez, M. J. Franklin, I. Stoica, and E. AMPLab, GraphX: A Resilient Distributed Graph System on Spark in First International Workshop on Graph Data Management Experiences and Systems, p. 2,2013.
|
[36]
|
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica, Spark: Cluster computing with working sets,
HotCloud'10 Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, (2010), p10.
|
[37]
|
M. Zaharia, M. Chowdhury, T. Das and A. Dave,
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, tech. rep. , UCB/EECS-2011-82 UC Berkerly, 2012.
|
[38]
|
T. Zhang, Solving large scale linear prediction problems using stochastic gradient descent algorithms in Proceedings of the twenty-first international conference on Machine learning, ACM, (2004), p116.
|
[39]
|
Y. Zhou, D. Wilkinson, R. Schreiber and R. Pan, Large-scale parallel collaborative filtering for the netflix prize, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, 5034 (2008), 337-348.
doi: 10.1007/978-3-540-68880-8_32.
|