[1]
|
H. A. Abbass, A. Bender, H. Dam, S. Baker, J. M. Whitacre and R. A. Sarker, Computational scenario-based capability planning, in Genetic and Evolutionary Computation Conference
(GECCO), ACM, Atlanta, Georgia, (2008), 1437-1444.
doi: 10.1145/1389095.1389378.
|
[2]
|
P. Brucker, A. Drexl, R. Möhring, K. Neumann and E. Pesch, Resource-constrained project scheduling: Notation, classification, models, and methods, European Journal of Operational Research, 112 (1999), 3-41.
doi: 10.1016/S0377-2217(98)00204-5.
|
[3]
|
L. T. Bui, M. Barlow and H. A. Abbass, A multi-objective risk-based framework for mission capability planning, New Mathematics and Natural Computation, 5 (2009), 459-485.
doi: 10.1142/S1793005709001428.
|
[4]
|
F. Chicano, F. Luna, A. J. Nebro and E. Alba, Using multi-objective metaheuristics to solve the software project scheduling problem, in GECCO'11 Proceedings of the 13th annual
conference on Genetic and evolutionary computation, ACM, Dublin, Ireland, (2011), 1915-1922.
doi: 10.1145/2001576.2001833.
|
[5]
|
S.-H. Cho and S. D. Eppinger, A simulation-based process model for managing complex design projects, IEEE Trans. Engineering Management, 52 (2005), 316-328.
doi: 10.1109/TEM.2005.850722.
|
[6]
|
D. Debels, B. D. Reyck, R. Leus and M. Vanhoucke, A hybrid scatter search/electromagnetism meta-heuristic for project scheduling, European Journal of Operational Research, 169 (2006), 638-653, Feature Cluster on Scatter Search Methods for Optimization.
doi: 10.1016/j.ejor.2004.08.020.
|
[7]
|
E. Demeulemeester, Minimizing resource availability costs in time-limited project networks, Management Science, 41 (1995), 1590-1598.
doi: 10.1287/mnsc.41.10.1590.
|
[8]
|
B. Depenbrock, T. Balint and J. Sheehy, Leveraging design principles to optimize technology portfolio prioritization, in 2015 IEEE Aerospace Conference, (2015), 1-10.
doi: 10.1109/AERO.2015.7119203.
|
[9]
|
A. Drexl and A. Kimms, Optimization guided lower and upper bounds for the resource investment problem, The Journal of the Operational Research Society, 52 (2001), 340-351.
doi: 10.1057/palgrave.jors.2601099.
|
[10]
|
K. S. Hindi, H. Yang and K. Fleszar, An evolutionary algorithm for resource-constrained project scheduling, IEEE Transactions on Evolutionary Computation, 6 (2002), 512-518.
doi: 10.1109/TEVC.2002.804914.
|
[11]
|
R. Kolisch, Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation, European Journal of Operational Research, 90 (1996), 320-333.
doi: 10.1016/0377-2217(95)00357-6.
|
[12]
|
R. Kolisch and S. Hartmann, Heuristic algorithms for the resource-constrained project scheduling problem: Classification and computational analysis, Project Scheduling, (1999), 147-178.
doi: 10.1007/978-1-4615-5533-9_7.
|
[13]
|
R. Kolisch and S. Hartmann, Experimental investigation of heuristics for resource-constrained project scheduling: An update, European Journal of Operational Research, 174 (2006), 23-37.
doi: 10.1016/j.ejor.2005.01.065.
|
[14]
|
R. Kolisch, A. Sprecher and A. Drexl, Characterization and generation of a general class of resource-constrained project scheduling problems, Management Science, 41 (1995), 1693-1703.
doi: 10.1287/mnsc.41.10.1693.
|
[15]
|
J. Liu, W. Zhong and L. Jiao, A multiagent evolutionary algorithm for combinatorial optimization problems, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40 (2010), 229-240.
|
[16]
|
J. Liu, W. Zhong, L. Jiao and X. Li, Moving block sequence and organizational evolutionary algorithm for general floorplanning with arbitrarily shaped rectilinear blocks, IEEE Transactions on Evolutionary Computation, 12 (2008), 630-646.
|
[17]
|
J. Liu, W. Zhong and L. Jiao, A multiagent evolutionary algorithm for constraint satisfaction problems, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 36 (2006), 54-73.
|
[18]
|
L. L. Minku, D. Sudholt and X. Yao, Evolutionary algorithms for the project scheduling problem: runtime analysis and improved design, in GECCO'12 Proceedings of the 14th annual conference on Genetic and evolutionary computation, ACM, Philadelphia, Pennsylvania USA, (2012), 1221-1228.
doi: 10.1145/2330163.2330332.
|
[19]
|
R. H. Möhring, Minimizing costs of resource requirements in project networks subject to a fixed completion time, Operational Research, 32 (1984), 89-120.
|
[20]
|
H. Nübel, The resource renting problem subject to temporal constraints, OR-Spektrum, 23 (2001), 359-381.
doi: 10.1007/PL00013357.
|
[21]
|
C. Qian, Y. Yu and Z. -H. Zhou, Variable solution structure can be helpful in evolutionary optimization Science China Information Sciences, 58 (2015), 112105, 17 pp.
doi: 10.1007/s11432-015-5382-y.
|
[22]
|
B. D. Reyck and R. Leus, R&d project scheduling when activities may fail, IIE Transactions, 40 (2008), 367-384.
doi: 10.1080/07408170701413944.
|
[23]
|
S. R. Schultz and J. Atzmon, A simulation based heuristic approach to a resource investment problem (rip), in Proceedings of the Winter Simulation Conference, (2014), 3411-3422.
doi: 10.1109/WSC.2014.7020174.
|
[24]
|
S. Shadrokh and F. Kianfar, A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty, European Journal of Operational Research, 181 (2007), 86-101.
doi: 10.1016/j.ejor.2006.03.056.
|
[25]
|
J. Xiong, J. Liu, Y. Chen and H. A. Abbass, A knowledge-based evolutionary multiobjective approach for stochastic extended resource investment project scheduling problems, IEEE Transactions on Evolutionary Computation, 18 (2014), 742-763.
|
[26]
|
J. Xiong, K. wei Yang, J. Liu, Q. song Zhao and Y.wu. Chen, A two-stage preference-based evolutionary multi-objective approach for capability planning problems, Knowledge-Based Systems, 31 (2012), 128-139.
doi: 10.1016/j.knosys.2012.02.003.
|
[27]
|
W. Zhong, J. Liu, M. Xue and L. Jiao, A multiagent genetic algorithm for global numerical optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34 (2004), 1128-1141.
|