\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

Fuzzy temporal meta-clustering of financial trading volatility patterns

  • Corresponding author:Pawan Lingras and Matt Triff

    Corresponding author:Pawan Lingras and Matt Triff; 

    Corresponding author:Pawan Lingras and Matt Triff 

     
Abstract Full Text(HTML) Figure(14) / Table(10) Related Papers Cited by
  • A volatile trading pattern on a given day in a financial market presents an opportunity for traders to maximize the difference between their buying and selling prices. In order to formulate trading strategies it may be advantageous to study typical trading patterns. This paper first describes how clustering can be used to profile typical volatile trading patterns. Fuzzy c-means provides a better description of individual trading patterns, since they can display certain aspects of different trading profiles. While daily volatility profile is a useful indicator for trading a stock, the volatility history is also an important part of the decision making process. This paper further proposes a fuzzy temporal meta-clustering algorithm that not only captures the daily volatility but also puts it in a historical perspective by including the volatility of previous two weeks in the meta-profile.

    Mathematics Subject Classification: Primary: 91C20, 62-07; Secondary: 91B84.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Cluster Scatter

    Figure 2.  DB Index

    Figure 3.  Centroids of 5 Clusters after Ranking

    Figure 4.  Average Chronological Daily Patterns

    Figure 5.  Fuzzy Centroids of 5 Clusters after Ranking

    Figure 6.  Flowchart of Recursive Meta-clustering

    Figure 7.  Fuzzy Temporal Meta-clustering Algorithm

    Figure 8.  Ranks in Final Temporal Cluster

    Figure 9.  Ranks of day 2012-01-12 and last 10 days of Instrument Z_2

    Figure 10.  Ranks of day 2011-10-03 and last 10 days of Instrument 3_1

    Figure 11.  Ranks of day 2011-12-16 and last 10 days of Instrument A_10

    Figure 12.  Ranks of day 2011-08-16 and last 10 days of Instrument 3_1

    Figure 13.  Ranks of day 2012-01-04 and last 10 days of Instrument A_10

    Figure 14.  Ranks of day 2011-11-01 and last 10 days of Instrument A_113

    Table 1.  Calculation of Percentiles for a Sample Record

    Percentile 10% 25% 50% 75% 90%
    Percentile of avgp (avgpPerc) 0.9841346 0.9873798 0.9927885 0.9951923 0.9966346
     | Show Table
    DownLoad: CSV

    Table 2.  Crisp Cluster Cardinalities

    Cluster number 1 2 3 4 5
    Percentile values 14125 8676 3349 817 45
    Black Scholes 14182 8990 3061 684 95
     | Show Table
    DownLoad: CSV

    Table 3.  Cluster Intersections

    cdvr1 cdvr2 cdvr3 cdvr4 cdvr5
    cpr1 10430 3104 519 67 5
    cpr2 3411 4047 1089 123 6
    cpr3 339 1727 1047 223 13
    cpr4 2 112 404 258 41
    cpr5 0 0 2 13 30
     | Show Table
    DownLoad: CSV

    Table 4.  Fuzzy memberships for different stocks

    Day:Instrument fcpri fcpr2 fcpr3 fcpr4 fcpr5 Avg Rank
    2011-08-16:3_1 0.04 0.06 0.09 0.35 0.46 4.14
    2011-08-17:3_1 0.85 0.13 0.03 0 0 1.19
    :
    2012-01-31:3_1 0.06 0.16 0.65 0.12 0.01 2.86
    :
    2011-08-16:Z_2 0.97 0.03 0.01 0 0 1.04
    :
    2012-01-31:Z_2 0.93 0.05 0.01 0 0 1.09
     | Show Table
    DownLoad: CSV

    Table 5.  Static Part of Percentile Data

    Day:Instrument p10 p25 p50 p75 p90
    2011-08-16:3_1 0 0.28 0.56 0.67 0.78
    2011-08-17:3_1 0 0 0.04 0.09 0.11
    :
    2012-01-31:3_1 0 0 0.15 0.29 0.46
    :
    2011-08-16:Z_2 0 0.027 0.045 0.05 0.05
    :
    2012-01-31:Z_2 0 0.01 0.019 0.03 0.11
     | Show Table
    DownLoad: CSV

    Table 6.  Ranked Clusters for Percentile Data after first iteration

    Centers
    Rank Cluster p10 p25 p50 p75 p90
    1 C2 0 0.02 0.03 0.06 0.08
    2 C5 0 0.05 0.10 0.16 0.21
    3 C4 0 0.09 0.19 0.28 0.35
    4 C1 0 0.16 0.35 0.48 0.57
    5 C3 0 0.30 0.66 0.88 1.00
     | Show Table
    DownLoad: CSV

    Table 7.  Dynamic Part after first iteration

    Daym+1:Instrument dm-9 dm-8 dm-7 dm-6 dm-5 dm-4 dm-3 dm-2 dm-1 dm
    2011-08-16:3_1 2.69 2.69 2.70 2.70 2.69 2.70 2.68 2.70 2.70 2.69
    2011-08-17:3_1 2.69 2.70 2.70 2.69 2.70 2.68 2.70 2.70 2.69 4.14
    :
    2012-01-31:3_1 1.07 2.10 3.78 1.25 1.81 3.58 4.06 1.09 1.42 3.56
    :
    2011-08-16:Z_2 2.69 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.69
    :
    2012-01-31:Z_2 1.09 2.90 2.89 1.15 3.04 1.87 2.00 3.01 2.05 1.71
     | Show Table
    DownLoad: CSV

    Table 8.  Concatenated Static Part(SP) and Dynamic Part(DP) after first iteration

    SP DP
    Day:Instrument p10 p25 p50 p75 p90 dm-9 dm-8 dm-7 dm-6 dm-5 dm-4 dm-3 dm-2 dm-1 dm
    2011-08-16:3_1 0 0.28 0.56 0.67 0.78 2.69 2.69 2.70 2.70 2.69 2.70 2.68 2.70 2.70 2.70
    2011-08-17:3_1 0 0 0.04 0.09 0.11 2.69 2.70 2.70 2.69 2.70 2.68 2.70 2.70 2.69 4.14
    :
    2012-01-31:3_1 0 0 0.15 0.29 0.46 1.07 2.10 3.78 1.25 1.81 3.58 4.06 1.09 1.42 3.56
    :
    2011-08-16:Z_2 0 0.03 0.045 0.05 0.05 2.69 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.69
    :
    2012-01-31:Z_2 0 0.01 0.02 0.03 0.11 1.09 2.90 2.89 1.15 3.04 1.87 2.00 3.01 2.05 1.71
     | Show Table
    DownLoad: CSV

    Table 9.  Cluster Centers after clustering with Concatenated Profile

    SP DP
    Rank Cluster p10 p25 p50 p75 p90 dm-9 dm-8 dm-7 dm-6 dm-5 dm-4 dm-3 dm-2 dm-1 dm
    1 C5 0 0.0530 0.1123 0.1720 0.2227 1.9925 1.9849 1.9812 1.9698 1.9645 1.9569 1.9539 1.9481 1.9409 1.9376
    2 C2 0 0.0531 0.1124 0.1721 0.2227 1.9933 1.9857 1.9820 1.9706 1.9653 1.9576 1.9546 1.9488 1.9415 1.9382
    3 C4 0 0.0531 0.1124 0.1721 0.2228 1.9937 1.9861 1.9824 1.9710 1.9657 1.9581 1.9550 1.9492 1.9419 1.9386
    4 C1 0 0.0531 0.1124 0.1722 0.2229 1.9943 1.9867 1.9830 1.9716 1.9663 1.9587 1.9556 1.9498 1.9424 1.9391
    5 C3 0 0.0532 0.1124 0.1722 0.2229 1.9946 1.9871 1.9834 1.9720 1.9666 1.9590 1.9501 1.9427 1.9559 1.9393
     | Show Table
    DownLoad: CSV

    Table 10.  Final Ranked Centers for Percentile Data

    Rank Cluster p10 p25 p50 p75 p90 dm-9 dm-8 dm-7 dm-6 dm-5 dm-4 dm-3 dm-2 dm-1 dm
    1 C2 0 0.04 0.08 0.12 0.15 1.20 1.17 1.14 1.12 1.11 1.10 1.10 1.11 1.13 1.15
    2 C4 0 0.05 0.10 0.15 0.19 2.24 2.20 2.16 2.14 2.11 2.10 2.10 2.11 2.12 2.14
    3 C3 0 0.05 0.10 0.16 0.21 3.04 3.03 3.03 3.03 3.02 3.02 3.02 3.02 3.03 3.03
    4 C1 0 0.05 0.11 0.17 0.22 3.82 3.86 3.89 3.92 3.94 3.95 3.97 3.98 3.99 3.99
    5 C5 0 0.07 0.14 0.21 0.27 4.70 4.75 4.78 4.81 4.83 4.84 4.83 4.82 4.79 4.76
     | Show Table
    DownLoad: CSV
  • [1] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA, USA, 1981.
    [2] F. Black and M. Scholes, The pricing of options and corporate liabilities, The journal of political economy, 81 (1973), 637-654.  doi: 10.1086/260062.
    [3] R. Caruana, M. Elhaway, N. Nguyen and C. Smith, Meta clustering, in Data Mining, 2006. ICDM’06. Sixth International Conference on, IEEE, 2006, 107-118. doi: 10.1109/ICDM.2006.103.
    [4] G. CastellanoA. M. Fanelli and C. Mencar, Generation of interpretable fuzzy granules by a double-clustering technique, Archives of Control Science, 12 (2002), 397-410. 
    [5] J. C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Cybernetics, 3 (1973), 32-57.  doi: 10.1080/01969727308546046.
    [6] R. El-Yaniv and O. Souroujon, Iterative double clustering for unsupervised and semi-supervised learning, Machine Learning: ECML 2001, Springer, 2001 (2001), 121-132. 
    [7] D. GnatyshakD. I. IgnatovA. Semenov and J. Poelmans, Gaining insight in social networks with biclustering and triclustering, Perspectives in Business Informatics Research, Springer, (2012), 162-171. 
    [8] D. V. Gnatyshak, D. I. Ignatov and S. O. Kuznetsov, From triadic fca to triclustering: Experimental comparison of some triclustering algorithms, CLA 2013, p249.
    [9] M. HalkidiY. Batistakis and M. Vazirgianni, Clustering validity checking methods: Part Ⅱ, ACM SIGMOD Record, 31 (2002), 19-27.  doi: 10.1145/601858.601862.
    [10] J. A. Hartigan and M. A. Wong, Algorithm AS136: A K-Means Clustering Algorithm, Applied Statistics, 28 (1979), 100-108. 
    [11] D. I. Ignatov, S. O. Kuznetsov and J. Poelmans, Concept-based biclustering for internet advertisement, in Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on, IEEE, 2012, 123-130. doi: 10.1109/ICDMW.2012.100.
    [12] D. I. IgnatovS. O. KuznetsovJ. Poelmans and L. E. Zhukov, Can triconcepts become triclusters?, International Journal of General Systems, 42 (2013), 572-593.  doi: 10.1080/03081079.2013.798899.
    [13] P. Lingras and K. Rathinavel, Recursive Meta-clustering in a Granular Network, in Plenary talk at the Fourth International Conference of Soft Computing and Pattern Recognition, Brunei, 2012. doi: 10.1109/ISDA.2012.6416634.
    [14] P. Lingras and M. Triff, Fuzzy and crisp recursive profiling of online reviewers and businesses, IEEE Transactions on Fuzzy Systems, 23 (2015), 1242-1258.  doi: 10.1109/TFUZZ.2014.2349532.
    [15] P. LingrasA. ElagamyA. Ammar and Z. Elouedi, Iterative meta-clustering through granular hierarchy of supermarket customers and products, Information Sciences, 257 (2014), 14-31.  doi: 10.1016/j.ins.2013.09.018.
    [16] P. Lingras and F. Haider, Recursive temporal meta-clustering, Applied Soft Computing, submitted.
    [17] P. Lingras and K. Rathinavel, Recursive meta-clustering in a granular network, in Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on, IEEE, 2012, 770-775. doi: 10.1109/ISDA.2012.6416634.
    [18] J. MacQueen, Some methods for classification and analysis of multivariate observations, in Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1 (1967), 281-297.
    [19] B. Mirkin, Mathematical Classification and Clustering, Kluwer Academic Publishers, Boston, MA, USA, 1996.
    [20] W. Pedrycz and J. Waletzky, Fuzzy clustering with partial supervision, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 27 (1997), 787-795.  doi: 10.1109/3477.623232.
    [21] D. Ramirez-Cano, S. Colton and R. Baumgarten, Player classification using a meta-clustering approach, in Proceedings of the 3rd Annual International Conference Computer Games, Multimedia and Allied Technology, 2010, 297-304.
    [22] K. Rathinavel and P. Lingras, A granular recursive fuzzy meta-clustering algorithm for social networks, in IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, IEEE, 2013, 567-572. doi: 10.1109/IFSA-NAFIPS.2013.6608463.
    [23] N. Slonim and N. Tishby, Document clustering using word clusters via the information bottleneck method, in 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2000, 208-215. doi: 10.1145/345508.345578.
    [24] M. Triff and P. Lingras, Recursive profiles of businesses and reviewers on yelp.com, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Springer, (2013), 325–336.
  • 加载中

Figures(14)

Tables(10)

SHARE

Article Metrics

HTML views(2103) PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return