
-
Previous Article
An application of PART to the Football Manager data for players clusters analyses to inform club team formation
- BDIA Home
- This Issue
-
Next Article
Older adults, frailty, and the social and behavioral determinants of health
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Fuzzy temporal meta-clustering of financial trading volatility patterns
Department of Mathematics & Computing Science, Saint Mary's University, Halifax, Nova Scotia, B3H3C3, Canada |
A volatile trading pattern on a given day in a financial market presents an opportunity for traders to maximize the difference between their buying and selling prices. In order to formulate trading strategies it may be advantageous to study typical trading patterns. This paper first describes how clustering can be used to profile typical volatile trading patterns. Fuzzy c-means provides a better description of individual trading patterns, since they can display certain aspects of different trading profiles. While daily volatility profile is a useful indicator for trading a stock, the volatility history is also an important part of the decision making process. This paper further proposes a fuzzy temporal meta-clustering algorithm that not only captures the daily volatility but also puts it in a historical perspective by including the volatility of previous two weeks in the meta-profile.
References:
[1] |
J. C. Bezdek,
Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA, USA, 1981. |
[2] |
F. Black and M. Scholes,
The pricing of options and corporate liabilities, The journal of political economy, 81 (1973), 637-654.
doi: 10.1086/260062. |
[3] |
R. Caruana, M. Elhaway, N. Nguyen and C. Smith, Meta clustering, in Data Mining, 2006. ICDM’06. Sixth International Conference on, IEEE, 2006, 107-118.
doi: 10.1109/ICDM.2006.103. |
[4] |
G. Castellano, A. M. Fanelli and C. Mencar,
Generation of interpretable fuzzy granules by a double-clustering technique, Archives of Control Science, 12 (2002), 397-410.
|
[5] |
J. C. Dunn,
A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Cybernetics, 3 (1973), 32-57.
doi: 10.1080/01969727308546046. |
[6] |
R. El-Yaniv and O. Souroujon,
Iterative double clustering for unsupervised and semi-supervised learning, Machine Learning: ECML 2001, Springer, 2001 (2001), 121-132.
|
[7] |
D. Gnatyshak, D. I. Ignatov, A. Semenov and J. Poelmans,
Gaining insight in social networks with biclustering and triclustering, Perspectives in Business Informatics Research, Springer, (2012), 162-171.
|
[8] |
D. V. Gnatyshak, D. I. Ignatov and S. O. Kuznetsov, From triadic fca to triclustering: Experimental comparison of some triclustering algorithms,
CLA 2013, p249. |
[9] |
M. Halkidi, Y. Batistakis and M. Vazirgianni,
Clustering validity checking methods: Part Ⅱ, ACM SIGMOD Record, 31 (2002), 19-27.
doi: 10.1145/601858.601862. |
[10] |
J. A. Hartigan and M. A. Wong,
Algorithm AS136: A K-Means Clustering Algorithm, Applied Statistics, 28 (1979), 100-108.
|
[11] |
D. I. Ignatov, S. O. Kuznetsov and J. Poelmans, Concept-based biclustering for internet advertisement, in Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference
on, IEEE, 2012, 123-130.
doi: 10.1109/ICDMW.2012.100. |
[12] |
D. I. Ignatov, S. O. Kuznetsov, J. Poelmans and L. E. Zhukov,
Can triconcepts become triclusters?, International Journal of General Systems, 42 (2013), 572-593.
doi: 10.1080/03081079.2013.798899. |
[13] |
P. Lingras and K. Rathinavel, Recursive Meta-clustering in a Granular Network, in Plenary talk at the Fourth International Conference of Soft Computing and Pattern Recognition, Brunei, 2012.
doi: 10.1109/ISDA.2012.6416634. |
[14] |
P. Lingras and M. Triff,
Fuzzy and crisp recursive profiling of online reviewers and businesses, IEEE Transactions on Fuzzy Systems, 23 (2015), 1242-1258.
doi: 10.1109/TFUZZ.2014.2349532. |
[15] |
P. Lingras, A. Elagamy, A. Ammar and Z. Elouedi,
Iterative meta-clustering through granular hierarchy of supermarket customers and products, Information Sciences, 257 (2014), 14-31.
doi: 10.1016/j.ins.2013.09.018. |
[16] |
P. Lingras and F. Haider, Recursive temporal meta-clustering,
Applied Soft Computing, submitted. |
[17] |
P. Lingras and K. Rathinavel, Recursive meta-clustering in a granular network, in Intelligent
Systems Design and Applications (ISDA), 2012 12th International Conference on, IEEE,
2012, 770-775.
doi: 10.1109/ISDA.2012.6416634. |
[18] |
J. MacQueen, Some methods for classification and analysis of multivariate observations,
in Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1
(1967), 281-297. |
[19] |
B. Mirkin,
Mathematical Classification and Clustering, Kluwer Academic Publishers, Boston, MA, USA, 1996. |
[20] |
W. Pedrycz and J. Waletzky,
Fuzzy clustering with partial supervision, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 27 (1997), 787-795.
doi: 10.1109/3477.623232. |
[21] |
D. Ramirez-Cano, S. Colton and R. Baumgarten, Player classification using a meta-clustering
approach, in Proceedings of the 3rd Annual International Conference Computer Games, Multimedia and Allied Technology, 2010, 297-304. |
[22] |
K. Rathinavel and P. Lingras, A granular recursive fuzzy meta-clustering algorithm for social
networks, in IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013
Joint, IEEE, 2013, 567-572.
doi: 10.1109/IFSA-NAFIPS.2013.6608463. |
[23] |
N. Slonim and N. Tishby, Document clustering using word clusters via the information bottleneck method, in 23rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2000, 208-215.
doi: 10.1145/345508.345578. |
[24] |
M. Triff and P. Lingras, Recursive profiles of businesses and reviewers on yelp.com, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Springer, (2013), 325–336. |
show all references
References:
[1] |
J. C. Bezdek,
Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA, USA, 1981. |
[2] |
F. Black and M. Scholes,
The pricing of options and corporate liabilities, The journal of political economy, 81 (1973), 637-654.
doi: 10.1086/260062. |
[3] |
R. Caruana, M. Elhaway, N. Nguyen and C. Smith, Meta clustering, in Data Mining, 2006. ICDM’06. Sixth International Conference on, IEEE, 2006, 107-118.
doi: 10.1109/ICDM.2006.103. |
[4] |
G. Castellano, A. M. Fanelli and C. Mencar,
Generation of interpretable fuzzy granules by a double-clustering technique, Archives of Control Science, 12 (2002), 397-410.
|
[5] |
J. C. Dunn,
A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Cybernetics, 3 (1973), 32-57.
doi: 10.1080/01969727308546046. |
[6] |
R. El-Yaniv and O. Souroujon,
Iterative double clustering for unsupervised and semi-supervised learning, Machine Learning: ECML 2001, Springer, 2001 (2001), 121-132.
|
[7] |
D. Gnatyshak, D. I. Ignatov, A. Semenov and J. Poelmans,
Gaining insight in social networks with biclustering and triclustering, Perspectives in Business Informatics Research, Springer, (2012), 162-171.
|
[8] |
D. V. Gnatyshak, D. I. Ignatov and S. O. Kuznetsov, From triadic fca to triclustering: Experimental comparison of some triclustering algorithms,
CLA 2013, p249. |
[9] |
M. Halkidi, Y. Batistakis and M. Vazirgianni,
Clustering validity checking methods: Part Ⅱ, ACM SIGMOD Record, 31 (2002), 19-27.
doi: 10.1145/601858.601862. |
[10] |
J. A. Hartigan and M. A. Wong,
Algorithm AS136: A K-Means Clustering Algorithm, Applied Statistics, 28 (1979), 100-108.
|
[11] |
D. I. Ignatov, S. O. Kuznetsov and J. Poelmans, Concept-based biclustering for internet advertisement, in Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference
on, IEEE, 2012, 123-130.
doi: 10.1109/ICDMW.2012.100. |
[12] |
D. I. Ignatov, S. O. Kuznetsov, J. Poelmans and L. E. Zhukov,
Can triconcepts become triclusters?, International Journal of General Systems, 42 (2013), 572-593.
doi: 10.1080/03081079.2013.798899. |
[13] |
P. Lingras and K. Rathinavel, Recursive Meta-clustering in a Granular Network, in Plenary talk at the Fourth International Conference of Soft Computing and Pattern Recognition, Brunei, 2012.
doi: 10.1109/ISDA.2012.6416634. |
[14] |
P. Lingras and M. Triff,
Fuzzy and crisp recursive profiling of online reviewers and businesses, IEEE Transactions on Fuzzy Systems, 23 (2015), 1242-1258.
doi: 10.1109/TFUZZ.2014.2349532. |
[15] |
P. Lingras, A. Elagamy, A. Ammar and Z. Elouedi,
Iterative meta-clustering through granular hierarchy of supermarket customers and products, Information Sciences, 257 (2014), 14-31.
doi: 10.1016/j.ins.2013.09.018. |
[16] |
P. Lingras and F. Haider, Recursive temporal meta-clustering,
Applied Soft Computing, submitted. |
[17] |
P. Lingras and K. Rathinavel, Recursive meta-clustering in a granular network, in Intelligent
Systems Design and Applications (ISDA), 2012 12th International Conference on, IEEE,
2012, 770-775.
doi: 10.1109/ISDA.2012.6416634. |
[18] |
J. MacQueen, Some methods for classification and analysis of multivariate observations,
in Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1
(1967), 281-297. |
[19] |
B. Mirkin,
Mathematical Classification and Clustering, Kluwer Academic Publishers, Boston, MA, USA, 1996. |
[20] |
W. Pedrycz and J. Waletzky,
Fuzzy clustering with partial supervision, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 27 (1997), 787-795.
doi: 10.1109/3477.623232. |
[21] |
D. Ramirez-Cano, S. Colton and R. Baumgarten, Player classification using a meta-clustering
approach, in Proceedings of the 3rd Annual International Conference Computer Games, Multimedia and Allied Technology, 2010, 297-304. |
[22] |
K. Rathinavel and P. Lingras, A granular recursive fuzzy meta-clustering algorithm for social
networks, in IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013
Joint, IEEE, 2013, 567-572.
doi: 10.1109/IFSA-NAFIPS.2013.6608463. |
[23] |
N. Slonim and N. Tishby, Document clustering using word clusters via the information bottleneck method, in 23rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2000, 208-215.
doi: 10.1145/345508.345578. |
[24] |
M. Triff and P. Lingras, Recursive profiles of businesses and reviewers on yelp.com, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Springer, (2013), 325–336. |














Percentile | 10% | 25% | 50% | 75% | 90% |
Percentile of avgp (avgpPerc) | 0.9841346 | 0.9873798 | 0.9927885 | 0.9951923 | 0.9966346 |
Percentile | 10% | 25% | 50% | 75% | 90% |
Percentile of avgp (avgpPerc) | 0.9841346 | 0.9873798 | 0.9927885 | 0.9951923 | 0.9966346 |
Cluster number | 1 | 2 | 3 | 4 | 5 |
Percentile values | 14125 | 8676 | 3349 | 817 | 45 |
Black Scholes | 14182 | 8990 | 3061 | 684 | 95 |
Cluster number | 1 | 2 | 3 | 4 | 5 |
Percentile values | 14125 | 8676 | 3349 | 817 | 45 |
Black Scholes | 14182 | 8990 | 3061 | 684 | 95 |
cdvr1 | cdvr2 | cdvr3 | cdvr4 | cdvr5 | |
cpr1 | 10430 | 3104 | 519 | 67 | 5 |
cpr2 | 3411 | 4047 | 1089 | 123 | 6 |
cpr3 | 339 | 1727 | 1047 | 223 | 13 |
cpr4 | 2 | 112 | 404 | 258 | 41 |
cpr5 | 0 | 0 | 2 | 13 | 30 |
cdvr1 | cdvr2 | cdvr3 | cdvr4 | cdvr5 | |
cpr1 | 10430 | 3104 | 519 | 67 | 5 |
cpr2 | 3411 | 4047 | 1089 | 123 | 6 |
cpr3 | 339 | 1727 | 1047 | 223 | 13 |
cpr4 | 2 | 112 | 404 | 258 | 41 |
cpr5 | 0 | 0 | 2 | 13 | 30 |
Day:Instrument | fcpri | fcpr2 | fcpr3 | fcpr4 | fcpr5 | Avg Rank |
2011-08-16:3_1 | 0.04 | 0.06 | 0.09 | 0.35 | 0.46 | 4.14 |
2011-08-17:3_1 | 0.85 | 0.13 | 0.03 | 0 | 0 | 1.19 |
: | ||||||
2012-01-31:3_1 | 0.06 | 0.16 | 0.65 | 0.12 | 0.01 | 2.86 |
: | ||||||
2011-08-16:Z_2 | 0.97 | 0.03 | 0.01 | 0 | 0 | 1.04 |
: | ||||||
2012-01-31:Z_2 | 0.93 | 0.05 | 0.01 | 0 | 0 | 1.09 |
Day:Instrument | fcpri | fcpr2 | fcpr3 | fcpr4 | fcpr5 | Avg Rank |
2011-08-16:3_1 | 0.04 | 0.06 | 0.09 | 0.35 | 0.46 | 4.14 |
2011-08-17:3_1 | 0.85 | 0.13 | 0.03 | 0 | 0 | 1.19 |
: | ||||||
2012-01-31:3_1 | 0.06 | 0.16 | 0.65 | 0.12 | 0.01 | 2.86 |
: | ||||||
2011-08-16:Z_2 | 0.97 | 0.03 | 0.01 | 0 | 0 | 1.04 |
: | ||||||
2012-01-31:Z_2 | 0.93 | 0.05 | 0.01 | 0 | 0 | 1.09 |
Day:Instrument | p10 | p25 | p50 | p75 | p90 |
2011-08-16:3_1 | 0 | 0.28 | 0.56 | 0.67 | 0.78 |
2011-08-17:3_1 | 0 | 0 | 0.04 | 0.09 | 0.11 |
: | |||||
2012-01-31:3_1 | 0 | 0 | 0.15 | 0.29 | 0.46 |
: | |||||
2011-08-16:Z_2 | 0 | 0.027 | 0.045 | 0.05 | 0.05 |
: | |||||
2012-01-31:Z_2 | 0 | 0.01 | 0.019 | 0.03 | 0.11 |
Day:Instrument | p10 | p25 | p50 | p75 | p90 |
2011-08-16:3_1 | 0 | 0.28 | 0.56 | 0.67 | 0.78 |
2011-08-17:3_1 | 0 | 0 | 0.04 | 0.09 | 0.11 |
: | |||||
2012-01-31:3_1 | 0 | 0 | 0.15 | 0.29 | 0.46 |
: | |||||
2011-08-16:Z_2 | 0 | 0.027 | 0.045 | 0.05 | 0.05 |
: | |||||
2012-01-31:Z_2 | 0 | 0.01 | 0.019 | 0.03 | 0.11 |
Centers | ||||||
Rank | Cluster | p10 | p25 | p50 | p75 | p90 |
1 | C2 | 0 | 0.02 | 0.03 | 0.06 | 0.08 |
2 | C5 | 0 | 0.05 | 0.10 | 0.16 | 0.21 |
3 | C4 | 0 | 0.09 | 0.19 | 0.28 | 0.35 |
4 | C1 | 0 | 0.16 | 0.35 | 0.48 | 0.57 |
5 | C3 | 0 | 0.30 | 0.66 | 0.88 | 1.00 |
Centers | ||||||
Rank | Cluster | p10 | p25 | p50 | p75 | p90 |
1 | C2 | 0 | 0.02 | 0.03 | 0.06 | 0.08 |
2 | C5 | 0 | 0.05 | 0.10 | 0.16 | 0.21 |
3 | C4 | 0 | 0.09 | 0.19 | 0.28 | 0.35 |
4 | C1 | 0 | 0.16 | 0.35 | 0.48 | 0.57 |
5 | C3 | 0 | 0.30 | 0.66 | 0.88 | 1.00 |
Daym+1:Instrument | dm-9 | dm-8 | dm-7 | dm-6 | dm-5 | dm-4 | dm-3 | dm-2 | dm-1 | dm |
2011-08-16:3_1 | 2.69 | 2.69 | 2.70 | 2.70 | 2.69 | 2.70 | 2.68 | 2.70 | 2.70 | 2.69 |
2011-08-17:3_1 | 2.69 | 2.70 | 2.70 | 2.69 | 2.70 | 2.68 | 2.70 | 2.70 | 2.69 | 4.14 |
: | ||||||||||
2012-01-31:3_1 | 1.07 | 2.10 | 3.78 | 1.25 | 1.81 | 3.58 | 4.06 | 1.09 | 1.42 | 3.56 |
: | ||||||||||
2011-08-16:Z_2 | 2.69 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.69 |
: | ||||||||||
2012-01-31:Z_2 | 1.09 | 2.90 | 2.89 | 1.15 | 3.04 | 1.87 | 2.00 | 3.01 | 2.05 | 1.71 |
Daym+1:Instrument | dm-9 | dm-8 | dm-7 | dm-6 | dm-5 | dm-4 | dm-3 | dm-2 | dm-1 | dm |
2011-08-16:3_1 | 2.69 | 2.69 | 2.70 | 2.70 | 2.69 | 2.70 | 2.68 | 2.70 | 2.70 | 2.69 |
2011-08-17:3_1 | 2.69 | 2.70 | 2.70 | 2.69 | 2.70 | 2.68 | 2.70 | 2.70 | 2.69 | 4.14 |
: | ||||||||||
2012-01-31:3_1 | 1.07 | 2.10 | 3.78 | 1.25 | 1.81 | 3.58 | 4.06 | 1.09 | 1.42 | 3.56 |
: | ||||||||||
2011-08-16:Z_2 | 2.69 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.69 |
: | ||||||||||
2012-01-31:Z_2 | 1.09 | 2.90 | 2.89 | 1.15 | 3.04 | 1.87 | 2.00 | 3.01 | 2.05 | 1.71 |
SP | DP | ||||||||||||||
Day:Instrument | p10 | p25 | p50 | p75 | p90 | dm-9 | dm-8 | dm-7 | dm-6 | dm-5 | dm-4 | dm-3 | dm-2 | dm-1 | dm |
2011-08-16:3_1 | 0 | 0.28 | 0.56 | 0.67 | 0.78 | 2.69 | 2.69 | 2.70 | 2.70 | 2.69 | 2.70 | 2.68 | 2.70 | 2.70 | 2.70 |
2011-08-17:3_1 | 0 | 0 | 0.04 | 0.09 | 0.11 | 2.69 | 2.70 | 2.70 | 2.69 | 2.70 | 2.68 | 2.70 | 2.70 | 2.69 | 4.14 |
: | |||||||||||||||
2012-01-31:3_1 | 0 | 0 | 0.15 | 0.29 | 0.46 | 1.07 | 2.10 | 3.78 | 1.25 | 1.81 | 3.58 | 4.06 | 1.09 | 1.42 | 3.56 |
: | |||||||||||||||
2011-08-16:Z_2 | 0 | 0.03 | 0.045 | 0.05 | 0.05 | 2.69 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.69 |
: | |||||||||||||||
2012-01-31:Z_2 | 0 | 0.01 | 0.02 | 0.03 | 0.11 | 1.09 | 2.90 | 2.89 | 1.15 | 3.04 | 1.87 | 2.00 | 3.01 | 2.05 | 1.71 |
SP | DP | ||||||||||||||
Day:Instrument | p10 | p25 | p50 | p75 | p90 | dm-9 | dm-8 | dm-7 | dm-6 | dm-5 | dm-4 | dm-3 | dm-2 | dm-1 | dm |
2011-08-16:3_1 | 0 | 0.28 | 0.56 | 0.67 | 0.78 | 2.69 | 2.69 | 2.70 | 2.70 | 2.69 | 2.70 | 2.68 | 2.70 | 2.70 | 2.70 |
2011-08-17:3_1 | 0 | 0 | 0.04 | 0.09 | 0.11 | 2.69 | 2.70 | 2.70 | 2.69 | 2.70 | 2.68 | 2.70 | 2.70 | 2.69 | 4.14 |
: | |||||||||||||||
2012-01-31:3_1 | 0 | 0 | 0.15 | 0.29 | 0.46 | 1.07 | 2.10 | 3.78 | 1.25 | 1.81 | 3.58 | 4.06 | 1.09 | 1.42 | 3.56 |
: | |||||||||||||||
2011-08-16:Z_2 | 0 | 0.03 | 0.045 | 0.05 | 0.05 | 2.69 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.69 |
: | |||||||||||||||
2012-01-31:Z_2 | 0 | 0.01 | 0.02 | 0.03 | 0.11 | 1.09 | 2.90 | 2.89 | 1.15 | 3.04 | 1.87 | 2.00 | 3.01 | 2.05 | 1.71 |
SP | DP | |||||||||||||||
Rank Cluster | p10 | p25 | p50 | p75 | p90 | dm-9 | dm-8 | dm-7 | dm-6 | dm-5 | dm-4 | dm-3 | dm-2 | dm-1 | dm | |
1 | C5 | 0 | 0.0530 | 0.1123 | 0.1720 | 0.2227 | 1.9925 | 1.9849 | 1.9812 | 1.9698 | 1.9645 | 1.9569 | 1.9539 | 1.9481 | 1.9409 | 1.9376 |
2 | C2 | 0 | 0.0531 | 0.1124 | 0.1721 | 0.2227 | 1.9933 | 1.9857 | 1.9820 | 1.9706 | 1.9653 | 1.9576 | 1.9546 | 1.9488 | 1.9415 | 1.9382 |
3 | C4 | 0 | 0.0531 | 0.1124 | 0.1721 | 0.2228 | 1.9937 | 1.9861 | 1.9824 | 1.9710 | 1.9657 | 1.9581 | 1.9550 | 1.9492 | 1.9419 | 1.9386 |
4 | C1 | 0 | 0.0531 | 0.1124 | 0.1722 | 0.2229 | 1.9943 | 1.9867 | 1.9830 | 1.9716 | 1.9663 | 1.9587 | 1.9556 | 1.9498 | 1.9424 | 1.9391 |
5 | C3 | 0 | 0.0532 | 0.1124 | 0.1722 | 0.2229 | 1.9946 | 1.9871 | 1.9834 | 1.9720 | 1.9666 | 1.9590 | 1.9501 | 1.9427 | 1.9559 | 1.9393 |
SP | DP | |||||||||||||||
Rank Cluster | p10 | p25 | p50 | p75 | p90 | dm-9 | dm-8 | dm-7 | dm-6 | dm-5 | dm-4 | dm-3 | dm-2 | dm-1 | dm | |
1 | C5 | 0 | 0.0530 | 0.1123 | 0.1720 | 0.2227 | 1.9925 | 1.9849 | 1.9812 | 1.9698 | 1.9645 | 1.9569 | 1.9539 | 1.9481 | 1.9409 | 1.9376 |
2 | C2 | 0 | 0.0531 | 0.1124 | 0.1721 | 0.2227 | 1.9933 | 1.9857 | 1.9820 | 1.9706 | 1.9653 | 1.9576 | 1.9546 | 1.9488 | 1.9415 | 1.9382 |
3 | C4 | 0 | 0.0531 | 0.1124 | 0.1721 | 0.2228 | 1.9937 | 1.9861 | 1.9824 | 1.9710 | 1.9657 | 1.9581 | 1.9550 | 1.9492 | 1.9419 | 1.9386 |
4 | C1 | 0 | 0.0531 | 0.1124 | 0.1722 | 0.2229 | 1.9943 | 1.9867 | 1.9830 | 1.9716 | 1.9663 | 1.9587 | 1.9556 | 1.9498 | 1.9424 | 1.9391 |
5 | C3 | 0 | 0.0532 | 0.1124 | 0.1722 | 0.2229 | 1.9946 | 1.9871 | 1.9834 | 1.9720 | 1.9666 | 1.9590 | 1.9501 | 1.9427 | 1.9559 | 1.9393 |
Rank Cluster | p10 | p25 | p50 | p75 | p90 | dm-9 | dm-8 | dm-7 | dm-6 | dm-5 | dm-4 | dm-3 | dm-2 | dm-1 | dm | |
1 | C2 | 0 | 0.04 | 0.08 | 0.12 | 0.15 | 1.20 | 1.17 | 1.14 | 1.12 | 1.11 | 1.10 | 1.10 | 1.11 | 1.13 | 1.15 |
2 | C4 | 0 | 0.05 | 0.10 | 0.15 | 0.19 | 2.24 | 2.20 | 2.16 | 2.14 | 2.11 | 2.10 | 2.10 | 2.11 | 2.12 | 2.14 |
3 | C3 | 0 | 0.05 | 0.10 | 0.16 | 0.21 | 3.04 | 3.03 | 3.03 | 3.03 | 3.02 | 3.02 | 3.02 | 3.02 | 3.03 | 3.03 |
4 | C1 | 0 | 0.05 | 0.11 | 0.17 | 0.22 | 3.82 | 3.86 | 3.89 | 3.92 | 3.94 | 3.95 | 3.97 | 3.98 | 3.99 | 3.99 |
5 | C5 | 0 | 0.07 | 0.14 | 0.21 | 0.27 | 4.70 | 4.75 | 4.78 | 4.81 | 4.83 | 4.84 | 4.83 | 4.82 | 4.79 | 4.76 |
Rank Cluster | p10 | p25 | p50 | p75 | p90 | dm-9 | dm-8 | dm-7 | dm-6 | dm-5 | dm-4 | dm-3 | dm-2 | dm-1 | dm | |
1 | C2 | 0 | 0.04 | 0.08 | 0.12 | 0.15 | 1.20 | 1.17 | 1.14 | 1.12 | 1.11 | 1.10 | 1.10 | 1.11 | 1.13 | 1.15 |
2 | C4 | 0 | 0.05 | 0.10 | 0.15 | 0.19 | 2.24 | 2.20 | 2.16 | 2.14 | 2.11 | 2.10 | 2.10 | 2.11 | 2.12 | 2.14 |
3 | C3 | 0 | 0.05 | 0.10 | 0.16 | 0.21 | 3.04 | 3.03 | 3.03 | 3.03 | 3.02 | 3.02 | 3.02 | 3.02 | 3.03 | 3.03 |
4 | C1 | 0 | 0.05 | 0.11 | 0.17 | 0.22 | 3.82 | 3.86 | 3.89 | 3.92 | 3.94 | 3.95 | 3.97 | 3.98 | 3.99 | 3.99 |
5 | C5 | 0 | 0.07 | 0.14 | 0.21 | 0.27 | 4.70 | 4.75 | 4.78 | 4.81 | 4.83 | 4.84 | 4.83 | 4.82 | 4.79 | 4.76 |
[1] |
Guojun Gan, Qiujun Lan, Shiyang Sima. Scalable clustering by truncated fuzzy $c$-means. Big Data & Information Analytics, 2016, 1 (2&3) : 247-259. doi: 10.3934/bdia.2016007 |
[2] |
Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial and Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565 |
[3] |
Zhi Liu, Tie Zhang. An improved ARMA(1, 1) type fuzzy time series applied in predicting disordering. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 355-366. doi: 10.3934/naco.2020007 |
[4] |
Qihong Chen. Recovery of local volatility for financial assets with mean-reverting price processes. Mathematical Control and Related Fields, 2018, 8 (3&4) : 625-635. doi: 10.3934/mcrf.2018026 |
[5] |
Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems and Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022 |
[6] |
Victor Isakov. Recovery of time dependent volatility coefficient by linearization. Evolution Equations and Control Theory, 2014, 3 (1) : 119-134. doi: 10.3934/eect.2014.3.119 |
[7] |
Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720 |
[8] |
Ruiqi Li, Yifan Chen, Xiang Zhao, Yanli Hu, Weidong Xiao. Time series based urban air quality predication. Big Data & Information Analytics, 2016, 1 (2&3) : 171-183. doi: 10.3934/bdia.2016003 |
[9] |
Jan Bouwe van den Berg, Gabriel William Duchesne, Jean-Philippe Lessard. Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach. Journal of Computational Dynamics, 2022, 9 (2) : 253-278. doi: 10.3934/jcd.2022005 |
[10] |
Ming-Yong Lai, Chang-Shi Liu, Xiao-Jiao Tong. A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows. Journal of Industrial and Management Optimization, 2010, 6 (2) : 435-451. doi: 10.3934/jimo.2010.6.435 |
[11] |
Yu-Ting Lin, John Malik, Hau-Tieng Wu. Wave-shape oscillatory model for nonstationary periodic time series analysis. Foundations of Data Science, 2021, 3 (2) : 99-131. doi: 10.3934/fods.2021009 |
[12] |
Antonella Falini, Francesca Mazzia, Cristiano Tamborrino. Spline based Hermite quasi-interpolation for univariate time series. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022039 |
[13] |
Willem Mélange, Herwig Bruneel, Bart Steyaert, Dieter Claeys, Joris Walraevens. A continuous-time queueing model with class clustering and global FCFS service discipline. Journal of Industrial and Management Optimization, 2014, 10 (1) : 193-206. doi: 10.3934/jimo.2014.10.193 |
[14] |
Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial and Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467 |
[15] |
Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005 |
[16] |
Ahmad Deeb, A. Hamdouni, Dina Razafindralandy. Comparison between Borel-Padé summation and factorial series, as time integration methods. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 393-408. doi: 10.3934/dcdss.2016003 |
[17] |
Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial and Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107 |
[18] |
Hassan Khodaiemehr, Dariush Kiani. High-rate space-time block codes from twisted Laurent series rings. Advances in Mathematics of Communications, 2015, 9 (3) : 255-275. doi: 10.3934/amc.2015.9.255 |
[19] |
Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems and Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169 |
[20] |
Ke Wang, Qi Wang, Feng Yu. Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 505-543. doi: 10.3934/dcds.2017021 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]