Advanced Search
Article Contents
Article Contents

Peierls instability with electron-electron interaction: the commensurate case

Abstract Related Papers Cited by
  • We consider a quantum many-body model describing a system of electrons interacting with themselves and hopping from one ion to another of a one dimensional lattice. We show that the ground state energy of such system, as a functional of the ionic configurations, has local minima in correspondence of configurations described by smooth $\frac{\pi}{pF}$ periodic functions, if the interaction is repulsive and large enough and pF is the Fermi momentum of the electrons. This means physically that a $d=1$ metal develop a periodic distortion of its reticular structure (Peierls instability). The minima are found solving the Eulero-Lagrange equations of the energy by a contraction method.
    Mathematics Subject Classification: 82Dxx.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint