September  2002, 1(3): 327-340. doi: 10.3934/cpaa.2002.1.327

The global minimizers and vortex solutions to a Ginzburg-Landau model of superconducting films

1. 

Department of Mathematics, South China Normal University, Guangzhou, Guangdong 510631, China

2. 

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received  June 2001 Revised  December 2001 Published  June 2002

In this paper, we discuss the global minimizers of a free energy for the superconducting thin films placed in a magnetic field $h_{e x}$ below the lower critical field $H_{c1}$ or between $H_{c1}$ and the upper critical field $H_{c2}$. For $h_{e x}$ is near but smaller than $H_{c1}$, we prove that the global minimizer having no vortex is unique. For $H_{c1}$<<$h_{e x}$<<$H_{c2}$, we prove that the density of the vortices of the global minimizer is proportional to the applied field.
Citation: Shijin Ding, Qiang Du. The global minimizers and vortex solutions to a Ginzburg-Landau model of superconducting films. Communications on Pure and Applied Analysis, 2002, 1 (3) : 327-340. doi: 10.3934/cpaa.2002.1.327
[1]

Rejeb Hadiji, Ken Shirakawa. Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1345-1361. doi: 10.3934/cpaa.2010.9.1345

[2]

Xiao-Ping Wang, Ke Wang, Weinan E. Simulations of 3-D domain wall structures in thin films. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 373-389. doi: 10.3934/dcdsb.2006.6.373

[3]

Yang Liu, Wenke Li. A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4367-4381. doi: 10.3934/dcdss.2021112

[4]

Yanpeng Jin, Ying Fu. Global Carleman estimate and its applications for a sixth-order equation related to thin solid films. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2775-2797. doi: 10.3934/cpaa.2022072

[5]

Laura Sigalotti. Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7 (3) : 543-582. doi: 10.3934/nhm.2012.7.543

[6]

Wafaa Assaad, Ayman Kachmar. The influence of magnetic steps on bulk superconductivity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6623-6643. doi: 10.3934/dcds.2016087

[7]

Tai-Chia Lin. Vortices for the nonlinear wave equation. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391

[8]

Carolina Mendoza, Jean Bragard, Pier Luigi Ramazza, Javier Martínez-Mardones, Stefano Boccaletti. Pinning control of spatiotemporal chaos in the LCLV device. Mathematical Biosciences & Engineering, 2007, 4 (3) : 523-530. doi: 10.3934/mbe.2007.4.523

[9]

Matteo Novaga, Enrico Valdinoci. Closed curves of prescribed curvature and a pinning effect. Networks and Heterogeneous Media, 2011, 6 (1) : 77-88. doi: 10.3934/nhm.2011.6.77

[10]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[11]

Tiantian Mu, Jun-E Feng, Biao Wang. Pinning detectability of Boolean control networks with injection mode. Discrete and Continuous Dynamical Systems - S, 2022, 15 (11) : 3275-3296. doi: 10.3934/dcdss.2022089

[12]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[13]

Francesco Maggi, Salvatore Stuvard, Antonello Scardicchio. Soap films with gravity and almost-minimal surfaces. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6877-6912. doi: 10.3934/dcds.2019236

[14]

Mei-Qin Zhan. Global attractors for phase-lock equations in superconductivity. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 243-256. doi: 10.3934/dcdsb.2002.2.243

[15]

Jiao He, Rafael Granero-Belinchón. On the dynamics of 3D electrified falling films. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4041-4064. doi: 10.3934/dcds.2021027

[16]

Stefanella Boatto. Curvature perturbations and stability of a ring of vortices. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 349-375. doi: 10.3934/dcdsb.2008.10.349

[17]

B. Emamizadeh, F. Bahrami, M. H. Mehrabi. Steiner symmetric vortices attached to seamounts. Communications on Pure and Applied Analysis, 2004, 3 (4) : 663-674. doi: 10.3934/cpaa.2004.3.663

[18]

Shusen Yan, Weilin Yu. Planar vortices in a bounded domain with a hole. Electronic Research Archive, 2021, 29 (6) : 4229-4241. doi: 10.3934/era.2021081

[19]

Yilun Shang. Group pinning consensus under fixed and randomly switching topologies with acyclic partition. Networks and Heterogeneous Media, 2014, 9 (3) : 553-573. doi: 10.3934/nhm.2014.9.553

[20]

Mei-Qin Zhan. Gevrey class regularity for the solutions of the Phase-Lock equations of Superconductivity. Conference Publications, 2001, 2001 (Special) : 406-415. doi: 10.3934/proc.2001.2001.406

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]