-
Previous Article
Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits
- CPAA Home
- This Issue
-
Next Article
An application of homogenization techniques to population dynamics models
Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains
1. | Department of Mathematics, University of California, Davis, CA 95616, United States |
We prove the global well-posedness of weak $H^1$ solutions for the case of no-slip boundary conditions in three dimensions, generalizing the periodic-box results of [8]. We make use of the new formulation of the LANS-$\alpha$ equations on bounded domains given in [20] and [14], which reveals the additional boundary conditions necessary to obtain well-posedness. The uniform estimates yield global attractors; the bound for the dimension of the global attractor in 3D exactly follows the periodic box case of [8]. In 2D, our bound is $\alpha$-independent and is similar to the bound for the global attractor for the 2D Navier-Stokes equations.
[1] |
Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure and Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353 |
[2] |
T. Tachim Medjo. Averaging of a 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external forces. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1281-1305. doi: 10.3934/cpaa.2011.10.1281 |
[3] |
Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1 |
[4] |
T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure and Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415 |
[5] |
Yat Tin Chow, Ali Pakzad. On the zeroth law of turbulence for the stochastically forced Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021270 |
[6] |
Marcel Oliver. The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier–Stokes equations with Besov class data in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2002, 1 (2) : 221-235. doi: 10.3934/cpaa.2002.1.221 |
[7] |
Yann Brenier. Approximation of a simple Navier-Stokes model by monotonic rearrangement. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1285-1300. doi: 10.3934/dcds.2014.34.1285 |
[8] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[9] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[10] |
Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic and Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009 |
[11] |
Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115 |
[12] |
Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397 |
[13] |
Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 1191-1205. doi: 10.3934/era.2020065 |
[14] |
Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539 |
[15] |
Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481 |
[16] |
Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073 |
[17] |
Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349 |
[18] |
Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433 |
[19] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[20] |
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]