• Previous Article
    Phase-field systems with vectorial order parameters including diffusional hysteresis effects
  • CPAA Home
  • This Issue
  • Next Article
    Bifurcations of periodics from homoclinics in singular O.D.E.: applications to discretizations of travelling waves of P.D.E.
December  2002, 1(4): 485-494. doi: 10.3934/cpaa.2002.1.485

A note on the convergence in the limit of a long wave vortex density superconductivity model to the Bean model

1. 

Centre for Mathematical Analysis and Its Applications, School of Mathematical Scie, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom

Received  January 2001 Revised  August 2002 Published  September 2002

We show that the unique solution of the Bean model for superconductivity is the $p\to \infty$ limit of the solution to a two-dimensional vortex density model with a p-Laplacian velocity law.
Citation: V. Styles. A note on the convergence in the limit of a long wave vortex density superconductivity model to the Bean model. Communications on Pure and Applied Analysis, 2002, 1 (4) : 485-494. doi: 10.3934/cpaa.2002.1.485
[1]

Goro Akagi. Doubly nonlinear evolution equations and Bean's critical-state model for type-II superconductivity. Conference Publications, 2005, 2005 (Special) : 30-39. doi: 10.3934/proc.2005.2005.30

[2]

Alessandro Audrito. Bistable reaction equations with doubly nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 2977-3015. doi: 10.3934/dcds.2019124

[3]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[4]

Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399-408. doi: 10.3934/proc.2007.2007.399

[5]

Georges Chamoun, Moustafa Ibrahim, Mazen Saad, Raafat Talhouk. Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4165-4188. doi: 10.3934/dcdsb.2020092

[6]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[7]

Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199

[8]

Genglin Li, Michael Winkler. Nonnegative solutions to a doubly degenerate nutrient taxis system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 687-704. doi: 10.3934/cpaa.2021194

[9]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[10]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[11]

H. M. Yin, Ben Q. Li, Jun Zou. A degenerate evolution system modeling bean's critical-state type-II superconductors. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 781-794. doi: 10.3934/dcds.2002.8.781

[12]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[13]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[14]

M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885

[15]

Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1

[16]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[17]

Alain Miranville, Giulio Schimperna. On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 675-697. doi: 10.3934/dcdsb.2010.14.675

[18]

Frank Jochmann. Power-law approximation of Bean's critical-state model with displacement current. Conference Publications, 2011, 2011 (Special) : 747-753. doi: 10.3934/proc.2011.2011.747

[19]

Zhichang Guo, Wenjuan Yao, Jiebao Sun, Boying Wu. Nonlinear fractional diffusion model for deblurring images with textures. Inverse Problems and Imaging, 2019, 13 (6) : 1161-1188. doi: 10.3934/ipi.2019052

[20]

Lili Du, Mingshu Fan. Thermal runaway for a nonlinear diffusion model in thermal electricity. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2349-2368. doi: 10.3934/dcds.2013.33.2349

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]