$||u||_{L^{2^*}(M,g)}^2 \le K^2\int_M\{|\nabla_{g} u|^2+c(n)R_{g} u^2\}dv_g +A||u||_{L^{2n/(n+2)}(M,g)}^2,$
for all $u\in H^1(M)$, where $2^*=2n/(n-2)$, $c(n)=(n-2)/[4(n-1)]$, $R_g$ is the scalar curvature, $K^{-1}=$ inf $\|\nabla u\|_{L^2(\mathbb R^n)}\|u\|_{L^{2n/(n-2)}(\mathbb R^n)}^{-1}$ and $A>0$ is a constant depending on $(M,g)$ only. The inequality is sharp
Citation: |