\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Positive solutions of superlinear boundary value problems with singular indefinite weight

Abstract Related Papers Cited by
  • In the present paper, we propose a method to deal with non-ordered lower and upper solutions in the case of ODE's with singular coefficients. As an application, we study the existence of positive solutions for a two-point boundary value problem on ]0,1[ associated to the equation $u'' + a(t) g(u) = 0,$ where the function $g: \quad \mathbb R^+\to \mathbb R^+$ is continuous with superlinear growth at infinity and the weight $a(t)$ changes sign as well as it may present some singularities at $t=0$ or $t= 1.$
    Mathematics Subject Classification: 34B15, 34L40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return