
Previous Article
Existence of solutions to equations for the flow of an incompressible fluid with capillary effects
 CPAA Home
 This Issue

Next Article
Multiple positive periodic solutions for a delay host macroparasite model
A class of generalized symmetries of smooth flows
1.  Department of Mathematics, Brigham Young University, Provo, UT 84602, United States, United States 
[1] 
L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 6877. doi: 10.3934/proc.2003.2003.68 
[2] 
Frank D. Grosshans, Jürgen Scheurle, Sebastian Walcher. Invariant sets forced by symmetry. Journal of Geometric Mechanics, 2012, 4 (3) : 271296. doi: 10.3934/jgm.2012.4.271 
[3] 
Michael Hochman. Smooth symmetries of $\times a$invariant sets. Journal of Modern Dynamics, 2018, 13: 187197. doi: 10.3934/jmd.2018017 
[4] 
Anant A. Joshi, D. H. S. Maithripala, Ravi N. Banavar. A bundle framework for observer design on smooth manifolds with symmetry. Journal of Geometric Mechanics, 2021, 13 (2) : 247271. doi: 10.3934/jgm.2021015 
[5] 
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasiperiodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131154. doi: 10.3934/dcds.2018006 
[6] 
Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2013, 12 (6) : 28732888. doi: 10.3934/cpaa.2013.12.2873 
[7] 
Anna Goƚȩbiewska, Norimichi Hirano, Sƚawomir Rybicki. Global symmetrybreaking bifurcations of critical orbits of invariant functionals. Discrete and Continuous Dynamical Systems  S, 2019, 12 (7) : 20052017. doi: 10.3934/dcdss.2019129 
[8] 
Jingxian Sun, Shouchuan Hu. Flowinvariant sets and critical point theory. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 483496. doi: 10.3934/dcds.2003.9.483 
[9] 
Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393418. doi: 10.3934/jmd.2010.4.393 
[10] 
Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 8994. 
[11] 
Christopher K. R. T. Jones, SiuKei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete and Continuous Dynamical Systems  S, 2009, 2 (4) : 9671023. doi: 10.3934/dcdss.2009.2.967 
[12] 
Hua Qiu, Shaomei Fang. A BKM's criterion of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2014, 13 (2) : 823833. doi: 10.3934/cpaa.2014.13.823 
[13] 
Baoquan Yuan. Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 22112219. doi: 10.3934/dcds.2013.33.2211 
[14] 
Boling Guo, Haiyang Huang. Smooth solution of the generalized system of ferromagnetic chain. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 729740. doi: 10.3934/dcds.1999.5.729 
[15] 
WaiKi Ching, JiaWen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial and Management Optimization, 2021, 17 (2) : 889908. doi: 10.3934/jimo.2020003 
[16] 
Ali Gholami, Mauricio D. Sacchi. Timeinvariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501519. doi: 10.3934/ipi.2017023 
[17] 
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $Laplacian. Discrete and Continuous Dynamical Systems  S, 2021, 14 (10) : 38513863. doi: 10.3934/dcdss.2020445 
[18] 
W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure and Applied Analysis, 2007, 6 (1) : 247277. doi: 10.3934/cpaa.2007.6.247 
[19] 
Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete and Continuous Dynamical Systems  S, 2017, 10 (4) : 919933. doi: 10.3934/dcdss.2017047 
[20] 
Lee DeVille, Nicole Riemer, Matthew West. Convergence of a generalized Weighted Flow Algorithm for stochastic particle coagulation. Journal of Computational Dynamics, 2019, 6 (1) : 6994. doi: 10.3934/jcd.2019003 
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]