-
Previous Article
Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations
- CPAA Home
- This Issue
-
Next Article
Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$
On the Ferromagnetism equations in the non static case
1. | MAB, UMR 5466, CNRS, Université Bordeaux 1, 351, cours de la Libération, 33405 Talence cedex, France |
2. | Université Bordeaux-I, Mathématiques Appliquées, 351 Cours de la Libération, 33405 Talence Cedex |
3. | LATP, Université de Provence, 39 rue Joliot-Curie, 13453 Marseille cedex 13, France |
[1] |
Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic and Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008 |
[2] |
Jingshi Li, Jiachuan Zhang, Guoliang Ju, Juntao You. A multi-mode expansion method for boundary optimal control problems constrained by random Poisson equations. Electronic Research Archive, 2020, 28 (2) : 977-1000. doi: 10.3934/era.2020052 |
[3] |
Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867 |
[4] |
Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331 |
[5] |
Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631 |
[6] |
Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543 |
[7] |
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473 |
[8] |
N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476 |
[9] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[10] |
Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051 |
[11] |
Hongjie Dong, Yan Guo, Timur Yastrzhembskiy. Kinetic Fokker-Planck and Landau equations with specular reflection boundary condition. Kinetic and Related Models, 2022, 15 (3) : 467-516. doi: 10.3934/krm.2022003 |
[12] |
Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations and Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061 |
[13] |
Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547 |
[14] |
Gaël Bonithon. Landau-Lifschitz-Gilbert equation with applied eletric current. Conference Publications, 2007, 2007 (Special) : 138-144. doi: 10.3934/proc.2007.2007.138 |
[15] |
N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711 |
[16] |
Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181 |
[17] |
Dandan Ma, Ji Shu, Ling Qin. Wong-Zakai approximations and asymptotic behavior of stochastic Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4335-4359. doi: 10.3934/dcdsb.2020100 |
[18] |
Xueke Pu, Min Li. Asymptotic behaviors for the full compressible quantum Navier-Stokes-Maxwell equations with general initial data. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5149-5181. doi: 10.3934/dcdsb.2019055 |
[19] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[20] |
Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]