
Previous Article
Asymptotic behavior of a parabolichyperbolic system
 CPAA Home
 This Issue

Next Article
Convergence of generalized proximal point algorithms
Problems on electrorheological fluid flows
1.  Department of Mathematics, University of Houston, Houston, TX 772043008, United States 
2.  Institute of Mathematics, University of Augsburg, D86159 Augsburg, Germany 
[1] 
Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure and Applied Analysis, 2016, 15 (4) : 13351350. doi: 10.3934/cpaa.2016.15.1335 
[2] 
J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete and Continuous Dynamical Systems  S, 2008, 1 (1) : 177186. doi: 10.3934/dcdss.2008.1.177 
[3] 
W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure and Applied Analysis, 2007, 6 (1) : 247277. doi: 10.3934/cpaa.2007.6.247 
[4] 
W. G. Litvinov, R. H.W. Hoppe. Coupled problems on stationary nonisothermal flow of electrorheological fluids. Communications on Pure and Applied Analysis, 2005, 4 (4) : 779803. doi: 10.3934/cpaa.2005.4.779 
[5] 
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems  B, 2014, 19 (8) : 25692580. doi: 10.3934/dcdsb.2014.19.2569 
[6] 
Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems  B, 2019, 24 (2) : 415421. doi: 10.3934/dcdsb.2018179 
[7] 
Mingxin Wang. Erratum: Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021269 
[8] 
M.J. LopezHerrero. The existence of weak solutions for a general class of mixed boundary value problems. Conference Publications, 2011, 2011 (Special) : 10151024. doi: 10.3934/proc.2011.2011.1015 
[9] 
R. Kannan, S. Seikkala. Existence of solutions to some PhiLaplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211217. doi: 10.3934/proc.2001.2001.211 
[10] 
Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete and Continuous Dynamical Systems  S, 2015, 8 (2) : 243257. doi: 10.3934/dcdss.2015.8.243 
[11] 
Antonio Iannizzotto, Nikolaos S. Papageorgiou. Existence and multiplicity results for resonant fractional boundary value problems. Discrete and Continuous Dynamical Systems  S, 2018, 11 (3) : 511532. doi: 10.3934/dcdss.2018028 
[12] 
John R. Graef, Shapour Heidarkhani, Lingju Kong. Existence of nontrivial solutions to systems of multipoint boundary value problems. Conference Publications, 2013, 2013 (special) : 273281. doi: 10.3934/proc.2013.2013.273 
[13] 
Lingju Kong, Qingkai Kong. Existence of nodal solutions of multipoint boundary value problems. Conference Publications, 2009, 2009 (Special) : 457465. doi: 10.3934/proc.2009.2009.457 
[14] 
Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 513535. doi: 10.3934/dcds.2008.21.513 
[15] 
John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$laplacian. Conference Publications, 2011, 2011 (Special) : 515522. doi: 10.3934/proc.2011.2011.515 
[16] 
XiaoYu Zhang, Qing Fang. A sixth order numerical method for a class of nonlinear twopoint boundary value problems. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 3143. doi: 10.3934/naco.2012.2.31 
[17] 
Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete and Continuous Dynamical Systems  B, 2015, 20 (7) : 21072128. doi: 10.3934/dcdsb.2015.20.2107 
[18] 
Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure and Applied Analysis, 2013, 12 (5) : 22132227. doi: 10.3934/cpaa.2013.12.2213 
[19] 
Colin J. Cotter, Darryl D. Holm. Geodesic boundary value problems with symmetry. Journal of Geometric Mechanics, 2010, 2 (1) : 5168. doi: 10.3934/jgm.2010.2.51 
[20] 
Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$Laplacian. Communications on Pure and Applied Analysis, 2004, 3 (4) : 729756. doi: 10.3934/cpaa.2004.3.729 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]