
Previous Article
EBesov spaces and dissipative equations
 CPAA Home
 This Issue

Next Article
Problems on electrorheological fluid flows
Asymptotic behavior of a parabolichyperbolic system
1.  Dipartimento di Matematica "F. Brioschi", Politecnico di Milano, I20133 Milano, Italy 
[1] 
Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phasefield crystal equation. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 25392564. doi: 10.3934/dcds.2015.35.2539 
[2] 
S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phasefield systems with memory. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 10191029. doi: 10.3934/dcds.2005.12.1019 
[3] 
Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phasefield system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 119. doi: 10.3934/cpaa.2018001 
[4] 
Ahmed Bonfoh, Ibrahim A. Suleman. Robust exponential attractors for singularly perturbed conserved phasefield systems with no growth assumption on the nonlinear term. Communications on Pure & Applied Analysis, 2021, 20 (10) : 36553682. doi: 10.3934/cpaa.2021125 
[5] 
Pierre Fabrie, Cedric Galusinski, A. Miranville, Sergey Zelik. Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 211238. doi: 10.3934/dcds.2004.10.211 
[6] 
John M. Ball. Global attractors for damped semilinear wave equations. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 3152. doi: 10.3934/dcds.2004.10.31 
[7] 
Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for nonautonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 27872812. doi: 10.3934/dcds.2017120 
[8] 
Stéphane Gerbi, Belkacem SaidHouari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems  S, 2012, 5 (3) : 559566. doi: 10.3934/dcdss.2012.5.559 
[9] 
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems  B, 2021, 26 (12) : 62676284. doi: 10.3934/dcdsb.2021018 
[10] 
Pengyu Chen, Xuping Zhang. Upper semicontinuity of attractors for nonautonomous fractional stochastic parabolic equations with delay. Discrete & Continuous Dynamical Systems  B, 2021, 26 (8) : 43254357. doi: 10.3934/dcdsb.2020290 
[11] 
Veronica Belleri, Vittorino Pata. Attractors for semilinear strongly damped wave equations on $\mathbb R^3$. Discrete & Continuous Dynamical Systems, 2001, 7 (4) : 719735. doi: 10.3934/dcds.2001.7.719 
[12] 
Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 31893209. doi: 10.3934/dcds.2013.33.3189 
[13] 
Tina Hartley, Thomas Wanner. A semiimplicit spectral method for stochastic nonlocal phasefield models. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 399429. doi: 10.3934/dcds.2009.25.399 
[14] 
Gianluca Mola. Global attractors for a threedimensional conserved phasefield system with memory. Communications on Pure & Applied Analysis, 2008, 7 (2) : 317353. doi: 10.3934/cpaa.2008.7.317 
[15] 
Pengyan Ding, Zhijian Yang. Attractors of the strongly damped Kirchhoff wave equation on $\mathbb{R}^{N}$. Communications on Pure & Applied Analysis, 2019, 18 (2) : 825843. doi: 10.3934/cpaa.2019040 
[16] 
Kei Matsuura, Mitsuharu Otani. Exponential attractors for a quasilinear parabolic equation. Conference Publications, 2007, 2007 (Special) : 713720. doi: 10.3934/proc.2007.2007.713 
[17] 
Claudio Giorgi. Phasefield models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems  S, 2015, 8 (4) : 693722. doi: 10.3934/dcdss.2015.8.693 
[18] 
Pierluigi Colli, Danielle Hilhorst, Françoise IssardRoch, Giulio Schimperna. Long time convergence for a class of variational phasefield models. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 6381. doi: 10.3934/dcds.2009.25.63 
[19] 
Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to nonautonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 26292653. doi: 10.3934/dcds.2018111 
[20] 
Xinyu Mei, Chunyou Sun. Attractors for A supcubic weakly damped wave equation in $ \mathbb{R}^{3} $. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 41174143. doi: 10.3934/dcdsb.2019053 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]