June  2005, 4(2): 295-309. doi: 10.3934/cpaa.2005.4.295

On homogenization of nonlinear hyperbolic equations

1. 

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States

Received  July 2004 Revised  January 2005 Published  March 2005

In this paper we study homogenization of nonlinear hyperbolic equations. The weak limit of the solutions is investigated by approximating the flux functions with piecewise linear functions. We study mostly Riemann problems for layered velocity fields as well as for the heterogeneous divergence free velocity fields.
Citation: Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295
[1]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[2]

Liselott Flodén, Jens Persson. Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks & Heterogeneous Media, 2016, 11 (4) : 627-653. doi: 10.3934/nhm.2016012

[3]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[4]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[5]

Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021128

[6]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[7]

Matilde Martínez, Shigenori Matsumoto, Alberto Verjovsky. Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem. Journal of Modern Dynamics, 2016, 10: 113-134. doi: 10.3934/jmd.2016.10.113

[8]

Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure & Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249

[9]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[10]

Eun Heui Kim, Charis Tsikkou. Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6257-6289. doi: 10.3934/dcds.2017271

[11]

Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021007

[12]

Tatsien Li, Wancheng Sheng. The general multi-dimensional Riemann problem for hyperbolic systems with real constant coefficients. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 737-744. doi: 10.3934/dcds.2002.8.737

[13]

Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045

[14]

Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871

[15]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[16]

Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks & Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61

[17]

Frédéric Legoll, William Minvielle. Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 1-27. doi: 10.3934/dcdss.2015.8.1

[18]

M. M. Cavalcanti, V.N. Domingos Cavalcanti, D. Andrade, T. F. Ma. Homogenization for a nonlinear wave equation in domains with holes of small capacity. Discrete & Continuous Dynamical Systems, 2006, 16 (4) : 721-743. doi: 10.3934/dcds.2006.16.721

[19]

Qin Wang, Kyungwoo Song. The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1661-1675. doi: 10.3934/dcds.2016.36.1661

[20]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]