June  2005, 4(2): 367-388. doi: 10.3934/cpaa.2005.4.367

Existence and stability of periodic travelling-wavesolutions of the Benjamin equation

1. 

Department of Mathematics, IMECC-UNICAMP, C.P. 6065, CEP 13083-970, Campinas, SP, Brazil, Brazil

Received  May 2004 Revised  December 2004 Published  March 2005

A family of steady periodic water waves in very deep fluids when the surface tension is present and satisfying the following nonlinear pseudo-differential equation $ u_t + u u_x + u_{x x x} +l \mathcal{H} u_{x x}=0$, known as the Benjamin equation, is shown to exist. Here $\mathcal{H}$ denotes the periodic Hilbert transform and $l \in\mathbb{R}$. By fixing a minimal period we obtain, via the implicit function theorem, an analytic curve of periodic travelling-wave solutions depending on the parameter $l$. Moreover, by making some changes in the abstract stability theory developed by Grillakis, Shatah, and Strauss, we prove that these travelling waves are nonlinearly stable to perturbations with the same wavelength.
Citation: Jaime Angulo Pava, Borys Alvarez Samaniego. Existence and stability of periodic travelling-wavesolutions of the Benjamin equation. Communications on Pure & Applied Analysis, 2005, 4 (2) : 367-388. doi: 10.3934/cpaa.2005.4.367
[1]

Nate Bottman, Bernard Deconinck. KdV cnoidal waves are spectrally stable. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1163-1180. doi: 10.3934/dcds.2009.25.1163

[2]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[3]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[4]

Matthew H. Chan, Peter S. Kim, Robert Marangell. Stability of travelling waves in a Wolbachia invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 609-628. doi: 10.3934/dcdsb.2018036

[5]

Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1129-1145. doi: 10.3934/dcdss.2011.4.1129

[6]

Fabrício Cristófani, Ademir Pastor. Nonlinear stability of periodic-wave solutions for systems of dispersive equations. Communications on Pure & Applied Analysis, 2020, 19 (10) : 5015-5032. doi: 10.3934/cpaa.2020225

[7]

Ola I. H. Maehlen. Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4113-4130. doi: 10.3934/dcds.2020174

[8]

Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775

[9]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

[10]

Yaping Wu, Xiuxia Xing, Qixiao Ye. Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations. Discrete & Continuous Dynamical Systems, 2006, 16 (1) : 47-66. doi: 10.3934/dcds.2006.16.47

[11]

Yi Li, Yaping Wu. Stability of travelling waves with noncritical speeds for double degenerate Fisher-Type equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 149-170. doi: 10.3934/dcdsb.2008.10.149

[12]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[13]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[14]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[15]

Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010

[16]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[17]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[18]

Jing Li, Yifu Wang, Jingxue Yin. Non-sharp travelling waves for a dual porous medium equation. Communications on Pure & Applied Analysis, 2016, 15 (2) : 623-636. doi: 10.3934/cpaa.2016.15.623

[19]

Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537

[20]

Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (122)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]