June  2005, 4(2): 463-473. doi: 10.3934/cpaa.2005.4.463

Asymptotic behavior of solutions to the nonlinear breakage equations

1. 

Department of Mathematics and Physics, Hubei University of Technology, Wuhan Hubei 430068, China

Received  April 2004 Revised  December 2004 Published  March 2005

The nonlinear breakage equations are a mathematical model for the dynamics of cluster growth when clusters undergo binary collisions resulting either in coalescence or breakup with possible transfer of matter. Each of these two events may happen with an a priori prescribed probability depending for instance on the sizes of the colliding clusters. The model consists of a countable number of non-locally coupled nonlinear ordinary differential equations modeling the concentration of the various clusters. In the present paper we consider asymptotic behavior of solutions as time tends to infinity and prove the weak* convergence to steady states provided at least two monoclusters appear after a collision, and the weak* convergence to some equilibrium state at the expense of making stronger assumptions. A result on the strong convergence has also been obtained.
Citation: Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463
[1]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3615-3627. doi: 10.3934/dcds.2021009

[2]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[3]

K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038

[4]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[5]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[6]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[7]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[8]

Mayte Pérez-Llanos, Juan Pablo Pinasco, Nicolas Saintier. Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations. Networks & Heterogeneous Media, 2021, 16 (2) : 257-281. doi: 10.3934/nhm.2021006

[9]

Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258

[10]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050

[11]

Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040

[12]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[13]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[14]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065

[15]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059

[16]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

[17]

Arianna Giunti. Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021009

[18]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[19]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

[20]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]