# American Institute of Mathematical Sciences

September  2005, 4(3): 537-548. doi: 10.3934/cpaa.2005.4.537

## Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation

 1 Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA 2 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802 3 Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States, United States

Received  November 2004 Revised  April 2005 Published  June 2005

In this paper, we study the effects of the spontaneous curvature on the static deformation of a vesicle membrane under the elastic bending energy, with prescribed bulk volume and surface area. Generalizing the phase field models developed in our previous works, we deduce a new energy formula involving the spontaneous curvature effects. Several axis-symmetric configurations are obtained through numerical simulations. Some analysis on the effects of the spontaneous curvature on the vesicle membrane shapes are also provided.
Citation: Qiang Du, Chun Liu, R. Ryham, X. Wang. Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation. Communications on Pure and Applied Analysis, 2005, 4 (3) : 537-548. doi: 10.3934/cpaa.2005.4.537
 [1] Ken Shirakawa, Hiroshi Watanabe. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 139-159. doi: 10.3934/dcdss.2014.7.139 [2] Peng Yu, Qiang Du. A variational construction of anisotropic mobility in phase-field simulation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 391-406. doi: 10.3934/dcdsb.2006.6.391 [3] Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227 [4] Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325 [5] Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko. Sharp interface limit in a phase field model of cell motility. Networks and Heterogeneous Media, 2017, 12 (4) : 551-590. doi: 10.3934/nhm.2017023 [6] Marita Thomas, Sven Tornquist. Discrete approximation of dynamic phase-field fracture in visco-elastic materials. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 3865-3924. doi: 10.3934/dcdss.2021067 [7] Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 [8] Kai Jiang, Wei Si. High-order energy stable schemes of incommensurate phase-field crystal model. Electronic Research Archive, 2020, 28 (2) : 1077-1093. doi: 10.3934/era.2020059 [9] Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481 [10] Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991 [11] Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic and Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501 [12] Petr Bauer, Michal Beneš, Radek Fučík, Hung Hoang Dieu, Vladimír Klement, Radek Máca, Jan Mach, Tomáš Oberhuber, Pavel Strachota, Vítězslav Žabka, Vladimír Havlena. Numerical simulation of flow in fluidized beds. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 833-846. doi: 10.3934/dcdss.2015.8.833 [13] Honghu Liu. Phase transitions of a phase field model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883 [14] Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by Runge-Kutta convolution quadrature. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2389-2416. doi: 10.3934/dcdsb.2017122 [15] Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391 [16] Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2273-2297. doi: 10.3934/dcdsb.2021006 [17] Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035 [18] Andriy Sokolov, Robert Strehl, Stefan Turek. Numerical simulation of chemotaxis models on stationary surfaces. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2689-2704. doi: 10.3934/dcdsb.2013.18.2689 [19] Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks and Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018 [20] Sergio Amat, Pablo Pedregal. On a variational approach for the analysis and numerical simulation of ODEs. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1275-1291. doi: 10.3934/dcds.2013.33.1275

2020 Impact Factor: 1.916