March  2006, 5(1): 107-124. doi: 10.3934/cpaa.2006.5.107

On the strong invariance property for non-Lipschitz dynamics

1. 

Department of Biomathematics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl 8, 1113 Sofia, Bulgaria

2. 

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, United States, United States

Received  March 2005 Revised  August 2005 Published  December 2005

We provide a new sufficient condition for strong invariance for differential inclusions, under very general conditions on the dynamics, in terms of a Hamiltonian inequality. In lieu of the usual Lipschitzness assumption on the multifunction, we assume a feedback realization condition that can in particular be satisfied for measurable dynamics that are neither upper nor lower semicontinuous.
Citation: Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure and Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107
[1]

Vladimir F. Demyanov, Julia A. Ryabova. Exhausters, coexhausters and converters in nonsmooth analysis. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1273-1292. doi: 10.3934/dcds.2011.31.1273

[2]

Cédric Villani. Regularity of optimal transport and cut locus: From nonsmooth analysis to geometry to smooth analysis. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 559-571. doi: 10.3934/dcds.2011.30.559

[3]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial and Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[4]

Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007

[5]

Hitoshi Ishii, Paola Loreti, Maria Elisabetta Tessitore. A PDE approach to stochastic invariance. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 651-664. doi: 10.3934/dcds.2000.6.651

[6]

Jacky Cresson, Bénédicte Puig, Stefanie Sonner. Stochastic models in biology and the invariance problem. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2145-2168. doi: 10.3934/dcdsb.2016041

[7]

Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97

[8]

Xing-Fu Zhong. Variational principles of invariance pressures on partitions. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 491-508. doi: 10.3934/dcds.2020019

[9]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[10]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[11]

Robert Jarrow, Philip Protter, Jaime San Martin. Asset price bubbles: Invariance theorems. Frontiers of Mathematical Finance, , () : -. doi: 10.3934/fmf.2021006

[12]

Anna M. Barry, Esther WIdiasih, Richard Mcgehee. Nonsmooth frameworks for an extended Budyko model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2447-2463. doi: 10.3934/dcdsb.2017125

[13]

Mohamed Aly Tawhid. Nonsmooth generalized complementarity as unconstrained optimization. Journal of Industrial and Management Optimization, 2010, 6 (2) : 411-423. doi: 10.3934/jimo.2010.6.411

[14]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[15]

Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179-189. doi: 10.3934/jcd.2016009

[16]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[17]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems and Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

[18]

Nicholas Westray, Harry Zheng. Constrained nonsmooth utility maximization on the positive real line. Mathematical Control and Related Fields, 2015, 5 (3) : 679-695. doi: 10.3934/mcrf.2015.5.679

[19]

Mohar Guha, Keith Promislow. Front propagation in a noisy, nonsmooth, excitable medium. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 617-638. doi: 10.3934/dcds.2009.23.617

[20]

Giancarlo Bigi. Componentwise versus global approaches to nonsmooth multiobjective optimization. Journal of Industrial and Management Optimization, 2005, 1 (1) : 21-32. doi: 10.3934/jimo.2005.1.21

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (0)

[Back to Top]