# American Institute of Mathematical Sciences

June  2006, 5(2): 321-336. doi: 10.3934/cpaa.2006.5.321

## Analysis of singular boundary value problems for an Emden-Fowler equation

 1 Centro de Matemática Aplicacoes, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa 2 Departamento de Matemática, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5000-311 Vila Real, Portugal

Received  March 2005 Revised  June 2005 Published  March 2006

In this work we are concerned about a second order nonlinear ordinary differential equation. Our main purpose is to describe one-parameter families of solutions of this equation which satisfy certain boundary conditions. These one-parameter families of solutions are obtained in the form of asymptotic or convergent series. The series expansions are then used to approximate the solutions of two boundary value problems. We are specially interested in the cases where these problems are degenerate with respect to the unknown function and/or to the independent variable. Lower and upper solutions for each of the considered boundary value problems are obtained and, in certain particular cases, a closed formula for the exact solution is derived. Numerical results are presented and discussed.
Citation: P. Lima, L. Morgado. Analysis of singular boundary value problems for an Emden-Fowler equation. Communications on Pure and Applied Analysis, 2006, 5 (2) : 321-336. doi: 10.3934/cpaa.2006.5.321
 [1] Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877 [2] Stephen C. Preston, Alejandro Sarria. One-parameter solutions of the Euler-Arnold equation on the contactomorphism group. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2123-2130. doi: 10.3934/dcds.2015.35.2123 [3] Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139 [4] M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure and Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 [5] Ciprian Preda. Discrete-time theorems for the dichotomy of one-parameter semigroups. Communications on Pure and Applied Analysis, 2008, 7 (2) : 457-463. doi: 10.3934/cpaa.2008.7.457 [6] Manuela Giampieri, Stefano Isola. A one-parameter family of analytic Markov maps with an intermittency transition. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 115-136. doi: 10.3934/dcds.2005.12.115 [7] John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515 [8] João Marcos do Ó, Abbas Moameni. Solutions for singular quasilinear Schrödinger equations with one parameter. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1011-1023. doi: 10.3934/cpaa.2010.9.1011 [9] Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047 [10] Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118 [11] Gabriele Bonanno, Giuseppina D'Aguì, Angela Sciammetta. One-dimensional nonlinear boundary value problems with variable exponent. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 179-191. doi: 10.3934/dcdss.2018011 [12] G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377 [13] John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283 [14] John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83 [15] Panos K. Palamides, Alex P. Palamides. Singular boundary value problems, via Sperner's lemma. Conference Publications, 2007, 2007 (Special) : 814-823. doi: 10.3934/proc.2007.2007.814 [16] Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059 [17] Stefano Biagi, Teresa Isernia. On the solvability of singular boundary value problems on the real line in the critical growth case. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1131-1157. doi: 10.3934/dcds.2020073 [18] Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure and Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399 [19] Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1379-1395. doi: 10.3934/dcdsb.2021094 [20] Wenying Feng. Solutions and positive solutions for some three-point boundary value problems. Conference Publications, 2003, 2003 (Special) : 263-272. doi: 10.3934/proc.2003.2003.263

2020 Impact Factor: 1.916