-
Previous Article
Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations
- CPAA Home
- This Issue
-
Next Article
Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations
Bifurcation analysis to Rayleigh-Bénard convection in finite box with up-down symmetry
1. | Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Japan |
[1] |
Tian Ma, Shouhong Wang. Attractor bifurcation theory and its applications to Rayleigh-Bénard convection. Communications on Pure and Applied Analysis, 2003, 2 (4) : 591-599. doi: 10.3934/cpaa.2003.2.591 |
[2] |
Jungho Park. Dynamic bifurcation theory of Rayleigh-Bénard convection with infinite Prandtl number. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 591-604. doi: 10.3934/dcdsb.2006.6.591 |
[3] |
B. A. Wagner, Andrea L. Bertozzi, L. E. Howle. Positive feedback control of Rayleigh-Bénard convection. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 619-642. doi: 10.3934/dcdsb.2003.3.619 |
[4] |
Jhean E. Pérez-López, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On the Rayleigh-Bénard-Marangoni problem: Theoretical and numerical analysis. Journal of Computational Dynamics, 2020, 7 (1) : 159-181. doi: 10.3934/jcd.2020006 |
[5] |
Tingyuan Deng. Three-dimensional sphere $S^3$-attractors in Rayleigh-Bénard convection. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 577-591. doi: 10.3934/dcdsb.2010.13.577 |
[6] |
Björn Birnir, Nils Svanstedt. Existence theory and strong attractors for the Rayleigh-Bénard problem with a large aspect ratio. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 53-74. doi: 10.3934/dcds.2004.10.53 |
[7] |
Kazuyuki Yagasaki. Existence of finite time blow-up solutions in a normal form of the subcritical Hopf bifurcation with time-delayed feedback for small initial functions. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2621-2634. doi: 10.3934/dcdsb.2021151 |
[8] |
Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363 |
[9] |
Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643 |
[10] |
Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109 |
[11] |
Marco Cabral, Ricardo Rosa, Roger Temam. Existence and dimension of the attractor for the Bénard problem on channel-like domains. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 89-116. doi: 10.3934/dcds.2004.10.89 |
[12] |
O. V. Kapustyan, V. S. Melnik, José Valero. A weak attractor and properties of solutions for the three-dimensional Bénard problem. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 449-481. doi: 10.3934/dcds.2007.18.449 |
[13] |
Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362 |
[14] |
Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561 |
[15] |
John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170 |
[16] |
Gabriela Jaramillo. Rotating spirals in oscillatory media with nonlocal interactions and their normal form. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022085 |
[17] |
Pooja Girotra, Jyoti Ahuja, Dinesh Verma. Analysis of Rayleigh Taylor instability in nanofluids with rotation. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 495-512. doi: 10.3934/naco.2021018 |
[18] |
Yong Duan, Jian-Guo Liu. Convergence analysis of the vortex blob method for the $b$-equation. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1995-2011. doi: 10.3934/dcds.2014.34.1995 |
[19] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[20] |
Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]