\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Young measure solutions of the two-dimensional Perona-Malik equation in image processing

Abstract Related Papers Cited by
  • For a given smooth initial value $u_0$, we construct sequences of approximate solutions $u_j$ in $W^{1,\infty}$ for the well-known Perona-Malik anisotropic diffusion model in image processing defined by $u_t-$ div $ [\rho(|\nabla u|^2)\nabla u]=0$ under the homogeneous Neumann condition, where $\rho(|X|^2)X=X/(1+|X|^2)$ for $X\in\mathbb R^2$. The Perona-Malik diffusion equation is of non-coercive forward-backward type. Our constructed approximate solutions satisfy the equation in the sense that $(u_j)_t-$ div$_x [\rho(|\nabla u_j|^2)\nabla u_j]\to 0$ strongly in $W^{-1,p}(Q_T)$ for all $1\leq p<\infty$, where $Q_T=(0,T)\times \Omega$ with $\Omega\subset\mathbb R^2$ the unit square. We also show, for any non-constant initial value $u_0$ that the approximate solutions $u_j$ do not converge to a solution, rather, they converge weakly to Young measure-valued solutions which can be represented partially explicitly. Our main idea is to convert the equation into a differential inclusion problem.
    Mathematics Subject Classification: Primary: 35D05, 68U10; Secondary: 74H20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(162) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return