• Previous Article
    $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation
  • CPAA Home
  • This Issue
  • Next Article
    Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions
December  2007, 6(4): 1043-1050. doi: 10.3934/cpaa.2007.6.1043

Orbital stability of solitary waves of the Schrödinger-Boussinesq equation

1. 

Faculty of Mathematics and Informatics, Shumen University, 9712 Shumen, Bulgaria

Received  February 2007 Revised  July 2007 Published  September 2007

This paper concerns the orbital stability of solitary waves of the Schrödinger-Boussinesq equation

$ i\partial_t u+\partial_x^2 u+uv =0\qquad\qquad\qquad\qquad\qquad (0.1)$

$ \partial_t^2 v-\partial_x^2 v+\partial_x^4 v+\partial_x^2 (3v^2+|u|^2)=0.$

By applying the abstract results of Grillakis, Shatah and Strauss [11, 12] and detailed spectral analysis developed by Lopes in [17], we obtain the stability of solitary waves.

Citation: Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043
[1]

Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations and Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57

[2]

Congcong Li, Chunqiu Li, Jintao Wang. Statistical solution and Liouville type theorem for coupled Schrödinger-Boussinesq equations on infinite lattices. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021311

[3]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[4]

Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391

[5]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[6]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations and Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[7]

Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005

[8]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[9]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[10]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[11]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[12]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[13]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[14]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[15]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[16]

Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations and Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009

[17]

Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2805-2816. doi: 10.3934/jimo.2020095

[18]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[19]

David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327

[20]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure and Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]