
Previous Article
3D convective CahnHilliard equation
 CPAA Home
 This Issue

Next Article
Orbital stability of solitary waves of the SchrödingerBoussinesq equation
$L^1$estimates for the higherorder derivatives of solutions to parabolic equations subject to initial values of bounded total variation
1.  Sobolev Institute of Mathematics, 4, Acad. Koptyug prosp., 630090 Novosibirsk, Russian Federation 
2.  Dipartimento di Matematica, Università “Roma Tre”, 1, Largo S. L. Murialdo, 00146 Rome, Italy 
[1] 
Yohei Fujishima. On the effect of higher order derivatives of initial data on the blowup set for a semilinear heat equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 449475. doi: 10.3934/cpaa.2018025 
[2] 
Francis Ribaud. Semilinear parabolic equations with distributions as initial data. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 305316. doi: 10.3934/dcds.1997.3.305 
[3] 
Lucas C. F. Ferreira, Elder J. VillamizarRoa. On the heat equation with concaveconvex nonlinearity and initial data in weak$L^p$ spaces. Communications on Pure and Applied Analysis, 2011, 10 (6) : 17151732. doi: 10.3934/cpaa.2011.10.1715 
[4] 
Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581605. doi: 10.3934/dcds.2011.31.581 
[5] 
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete and Continuous Dynamical Systems  S, 2021, 14 (2) : 745767. doi: 10.3934/dcdss.2020365 
[6] 
Yohei Fujishima. Blowup set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 46174645. doi: 10.3934/dcds.2014.34.4617 
[7] 
Luz de Teresa, Enrique Zuazua. Identification of the class of initial data for the insensitizing control of the heat equation. Communications on Pure and Applied Analysis, 2009, 8 (1) : 457471. doi: 10.3934/cpaa.2009.8.457 
[8] 
ZhiQiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initialboundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759792. doi: 10.3934/cpaa.2015.14.759 
[9] 
Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete and Continuous Dynamical Systems  B, 2017, 22 (2) : 537567. doi: 10.3934/dcdsb.2017026 
[10] 
Bingkang Huang, Lan Zhang. A global existence of classical solutions to the twodimensional VlasovFokkerPlanck and magnetohydrodynamics equations with large initial data. Kinetic and Related Models, 2019, 12 (2) : 357396. doi: 10.3934/krm.2019016 
[11] 
Kazuhiro Ishige. On the existence of solutions of the Cauchy problem for porous medium equations with radon measure as initial data. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 521546. doi: 10.3934/dcds.1995.1.521 
[12] 
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 38373867. doi: 10.3934/dcds.2021019 
[13] 
Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure and Applied Analysis, 2013, 12 (2) : 973984. doi: 10.3934/cpaa.2013.12.973 
[14] 
KaiSeng Chou, YingChuen Kwong. General initial data for a class of parabolic equations including the curve shortening problem. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 29632986. doi: 10.3934/dcds.2020157 
[15] 
Niklas Sapountzoglou, Aleksandra Zimmermann. Wellposedness of renormalized solutions for a stochastic $ p $Laplace equation with $ L^1 $initial data. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 23412376. doi: 10.3934/dcds.2020367 
[16] 
Niklas Sapountzoglou, Aleksandra Zimmermann. Renormalized solutions for stochastic $ p $Laplace equations with $ L^1 $initial data: The case of multiplicative noise. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 39794002. doi: 10.3934/dcds.2022041 
[17] 
Brian Smith and Gilbert Weinstein. On the connectedness of the space of initial data for the Einstein equations. Electronic Research Announcements, 2000, 6: 5263. 
[18] 
SeungYeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the twodimensional kineticfluid model for flocking with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (2) : 835882. doi: 10.3934/cpaa.2020039 
[19] 
Xiaoqiang Dai, Shaohua Chen. Global wellposedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems  S, 2021, 14 (12) : 42014211. doi: 10.3934/dcdss.2021114 
[20] 
Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $continuity in initial data of nonlinear reactiondiffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 13571374. doi: 10.3934/era.2020072 
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]