$x'' + \alpha x^+ - \beta x^- + g(x) =p(t),$
where $x^+ =$ max{$x,0$} is the positive part of $x$, $x^- $ =max{$-x,0$} its negative part and $\alpha,\beta$ are positive parameters. We assume that $g :\mathbb R \to \mathbb R$ is continuous and bounded on $\mathbb R$, $p:\mathbb R \to \mathbb R$ is continuous and $2\pi$-periodic. We provide some sufficient conditions of Ahmad, Lazer and Paul type for the existence of $2\pi$-periodic solutions when $(\alpha,\beta)$ belongs to one of the curves of the Fučík spectrum corresponding to $2\pi$-periodic boundary conditions.
Citation: |