-
Previous Article
A result on Hardy-Sobolev critical elliptic equations with boundary singularities
- CPAA Home
- This Issue
-
Next Article
A variational approach to resonance for asymmetric oscillators
Localization of blow-up points for a nonlinear nonlocal porous medium equation
1. | Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China, China |
$u_t=\Delta u^m + au^p\int_\Omega u^q dx,\quad x\in \Omega, t>0$
subject to homogeneous Dirichlet condition. We investigate the influence of the nonlocal source and local term on blow-up properties for this system. It is proved that: (i) when $p\leq 1$, the nonlocal source plays a dominating role, i.e. the system has global blow-up and the blow-up profile which is uniformly away from the boundary either at polynomial scale or logarithmic scale is obtained. (ii) When $p > m$, this system presents single blow-up pattern. In other words, the local term dominates the nonlocal term in the blow-up profile. This extends the work of Li and Xie in Appl. Math. Letter, 16 (2003) 185--192.
[1] |
W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655 |
[2] |
Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617 |
[3] |
Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016 |
[4] |
Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang. Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4321-4335. doi: 10.3934/dcdss.2021108 |
[5] |
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022106 |
[6] |
Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022009 |
[7] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
[8] |
Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113 |
[9] |
Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations and Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019 |
[10] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[11] |
Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639 |
[12] |
Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020 |
[13] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[14] |
José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43 |
[15] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[16] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[17] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[18] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[19] |
Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022075 |
[20] |
Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]