June  2007, 6(2): 481-486. doi: 10.3934/cpaa.2007.6.481

A result on the existence of global attractors for semigroups of closed operators

1. 

Dipartimento di Matematica "F. Brioschi", Politecnico di Milano, I-20133 Milano

2. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin

Received  July 2006 Revised  December 2006 Published  March 2007

In this note, we establish a general result on the existence of global attractors for semigroups $S(t)$ of operators acting on a Banach space $\mathcal X$, where the strong continuity $S(t)\in C(\mathcal X,\mathcal X)$ is replaced by the much weaker requirement that $S(t)$ be a closed map.
Citation: V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481
[1]

Sergey Dashkovskiy, Oleksiy Kapustyan. Robustness of global attractors: Abstract framework and application to dissipative wave equations. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021054

[2]

Valeria Danese, Pelin G. Geredeli, Vittorino Pata. Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2881-2904. doi: 10.3934/dcds.2015.35.2881

[3]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[4]

Pedro Marín-Rubio, José Real. Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 989-1006. doi: 10.3934/dcds.2010.26.989

[5]

Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209

[6]

Guangcun Lu. Parameterized splitting theorems and bifurcations for potential operators, Part I: Abstract theory. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1243-1316. doi: 10.3934/dcds.2021154

[7]

Francesco Altomare, Mirella Cappelletti Montano, Vita Leonessa. On the positive semigroups generated by Fleming-Viot type differential operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 323-340. doi: 10.3934/cpaa.2019017

[8]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[9]

Jorge J. Betancor, Alejandro J. Castro, Marta De León-Contreras. Variation operators for semigroups associated with Fourier-Bessel expansions. Communications on Pure and Applied Analysis, 2022, 21 (1) : 239-273. doi: 10.3934/cpaa.2021176

[10]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[11]

Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. A minimal approach to the theory of global attractors. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2079-2088. doi: 10.3934/dcds.2012.32.2079

[12]

Sergey Dashkovskiy, Oleksiy Kapustyan, Iryna Romaniuk. Global attractors of impulsive parabolic inclusions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1875-1886. doi: 10.3934/dcdsb.2017111

[13]

Rodrigo Samprogna, Cláudia B. Gentile Moussa, Tomás Caraballo, Karina Schiabel. Trajectory and global attractors for generalized processes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3995-4020. doi: 10.3934/dcdsb.2019047

[14]

Sibei Yang, Dachun Yang, Wenxian Ma. Global regularity estimates for Neumann problems of elliptic operators with coefficients having a BMO anti-symmetric part in NTA domains. Communications on Pure and Applied Analysis, 2022, 21 (3) : 959-998. doi: 10.3934/cpaa.2022006

[15]

Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, 2003, 2003 (Special) : 935-944. doi: 10.3934/proc.2003.2003.935

[16]

Dieter Bothe, Petra Wittbold. Abstract reaction-diffusion systems with $m$-completely accretive diffusion operators and measurable reaction rates. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2239-2260. doi: 10.3934/cpaa.2012.11.2239

[17]

Benzion Shklyar. Exact null-controllability of interconnected abstract evolution equations with unbounded input operators. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 463-479. doi: 10.3934/dcds.2021124

[18]

Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753

[19]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[20]

Jörg Härterich, Matthias Wolfrum. Describing a class of global attractors via symbol sequences. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 531-554. doi: 10.3934/dcds.2005.12.531

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (48)

Other articles
by authors

[Back to Top]