Generalized Routh-Hurwitz conditions consist of the positivity of $n$ determinants associated to a polynomial of degree $n$. They can be used in order to guarantee that a refinable function with dilation $M$ is a ripplet, that is, the collocation matrices of its shifts are totally positive. Given a polynomial of degree $n$, a test of $\mathcal O(n^2)$ elementary operations and growth factor 1 is presented in order to check the generalized Routh-Hurwitz conditions. The case corresponding to $M=3$ is described in detail.
Citation: |